Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intense low-energy ferromagnetic fluctuations in the antiferromagnetic heavy-fermion metal CeB6

This article has been updated


Heavy-fermion metals exhibit a plethora of low-temperature ordering phenomena 1,2,3,4. Among these are the so-called hidden-order phases 4,5,6,7,8 that, in contrast to conventional magnetic order, are invisible to standard neutron diffraction experiments. One of the structurally most simple hidden-order compounds, CeB6, has been intensively studied for an elusive phase that was attributed to the antiferroquadrupolar ordering of cerium-4f moments 9,10,11,12. As the ground state of CeB6 is characterized by a more conventional antiferromagnetic (AFM) order 9, the low-temperature physics of this system has generally been assumed to be governed solely by AFM interactions between the dipolar and multipolar Ce moments 13,14. Here we overturn this established picture by observing an intense ferromagnetic (FM) low-energy collective mode that dominates the magnetic excitation spectrum of CeB6. Inelastic neutron-scattering data reveal that the intensity of this FM excitation significantly exceeds that of conventional spin-wave magnons emanating from the AFM wavevectors, thus placing CeB6 much closer to a FM instability than previously anticipated. This propensity for ferromagnetism may account for much of the unexplained behaviour of CeB6, and should lead to a re-examination of existing theories that have so far largely neglected the role of FM interactions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constant-energy maps obtained from the TOF data.
Figure 2: Energy–momentum cuts.
Figure 3: Correlation between the dispersion of collective magnon excitations in the AFM state and the momentum-dependent quasielastic linewidth in the AFQ state.

Change history

  • 22 May 2014

    In the version of this Letter originally published online, in Fig. 1i, in the top row, Σ was missing a prime; in Fig. 2c, in all three panels, the R points shouldn't have had primes; in Fig. 2d, in the right panel, the label Γ above 1.0 should have had two primes; in Fig. 3a,c, the coordinates for Γ' should have read '(001)'; in Fig. 3b,d, the (001) curve should have been labelled Γ'; in Fig. 3b inset, the arrow for the L axis was pointing in the wrong direction. These errors have now been corrected in all versions of the Letter.


  1. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).

    Article  CAS  Google Scholar 

  2. Steppke, A. et al. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P1 − xAsx)2 . Science 339, 933–936 (2013).

    Article  CAS  Google Scholar 

  3. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    Article  Google Scholar 

  4. Chandra, P. et al. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002).

    Article  CAS  Google Scholar 

  5. Santini, P. et al. Multipolar interactions in f-electron systems: The paradigm of actinide dioxides. Rev. Mod. Phys. 81, 807–863 (2009).

    Article  CAS  Google Scholar 

  6. Mydosh, J. A. & Oppeneer, P. M. Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2 . Rev. Mod. Phys. 83, 1301–1322 (2011).

    Article  CAS  Google Scholar 

  7. Ono, H. et al. Magnetic phase diagram of clathrate compound Ce3Pd20Si6 with quadrupolar ordering. J. Phys.: Condens. Matter 25, 126003 (2013).

    CAS  Google Scholar 

  8. Kuramoto, Y., Kusunose, H. & Kiss, A. Multipole orders and fluctuations in strongly correlated electron systems. J. Phys. Soc. Jpn 78, 072001 (2009).

    Article  Google Scholar 

  9. Effantin, J. et al. Magnetic phase diagram of CeB6 . J. Magn. Magn. Mater. 47–48, 145–148 (1985).

    Article  Google Scholar 

  10. Nakao, H. et al. Antiferro-quadrupole ordering of CeB6 studied by resonant X-ray scattering. J. Phys. Soc. Jpn 70, 1857–1860 (2001).

    Article  CAS  Google Scholar 

  11. Matsumura, T., Yonemura, T., Kunimori, K., Sera, M. & Iga, F. Magnetic field induced 4f octupole in CeB6 probed by resonant X-ray diffraction. Phys. Rev. Lett. 103, 017203 (2009).

    Article  Google Scholar 

  12. Matsumura, T., Yonemura, T., Kunimori, K., Sera, M. & Iga, F. Antiferroquadrupole order and magnetic field induced octupole in CeB6 . Phys. Rev. B 85, 174417 (2012).

    Article  Google Scholar 

  13. Shiina, R., Shiba, H. & Thalmeier, P. Magnetic-field effects on quadrupolar ordering in a Γ8-quartet system CeB6 . J. Phys. Soc. Jpn 66, 1741–1755 (1997).

    Article  Google Scholar 

  14. Thalmeier, P. et al. Temperature and field dependence of multipolar excitations in CeB6 . J. Phys. Soc. Jpn 72, 3219–3225 (2003).

    Article  CAS  Google Scholar 

  15. Krellner, C. et al. Relevance of ferromagnetic correlations for the electron spin resonance in Kondo lattice systems. Phys. Rev. Lett. 100, 066401 (2008).

    Article  CAS  Google Scholar 

  16. Förster, T., Sichelschmidt, J., Krellner, C., Geibel, C. & Steglich, F. Electron spin resonance of the ferromagnetic Kondo lattice CeRuPO. J. Phys.: Condens. Matter 22, 435603 (2010).

    Google Scholar 

  17. Sichelschmidt, J., Ivanshin, V. A., Ferstl, J., Geibel, C. & Steglich, F. Low temperature electron spin resonance of the Kondo ion in a heavy fermion metal: YbRh2Si2 . Phys. Rev. Lett. 91, 156401 (2003).

    Article  CAS  Google Scholar 

  18. Schaufuss, U. et al. Evolution of the Kondo state of YbRh2Si2 probed by high-field ESR. Phys. Rev. Lett. 102, 076405 (2009).

    Article  CAS  Google Scholar 

  19. Sichelschmidt, J. et al. Electron spin resonance of YbIr2Si2 below the Kondo temperature. J. Phys.: Condens. Matter 19, 016211 (2007).

    Google Scholar 

  20. Stock, C. et al. From incommensurate correlations to mesoscopic spin resonance in YbRh2Si2 . Phys. Rev. Lett. 109, 127201 (2012).

    Article  CAS  Google Scholar 

  21. Zaharko, O. et al. Zero-field magnetic structure in CeB6 reinvestigated by neutron diffraction and muon spin relaxation. Phys. Rev. B 68, 214401 (2003).

    Article  Google Scholar 

  22. Friemel, G. et al. Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6 . Nature Commun. 3, 830 (2012).

    Article  CAS  Google Scholar 

  23. Akbari, A. & Thalmeier, P. Spin exciton formation inside the hidden order phase of CeB6 . Phys. Rev. Lett. 108, 146403 (2012).

    Article  Google Scholar 

  24. Demishev, S. V. et al. Magnetic resonance in cerium hexaboride caused by quadrupolar ordering. J. Magn. Magn. Mater. 300, e534–e537 (2006).

    Article  CAS  Google Scholar 

  25. Demishev, S. V. et al. Magnetic spin resonance in CeB6 . Phys. Rev. B 80, 245106 (2009).

    Article  Google Scholar 

  26. Schlottmann, P. Electron spin resonance in antiferro-quadrupolar-ordered CeB6 . Phys. Rev. B 86, 075135 (2012).

    Article  Google Scholar 

  27. Hiess, A. et al. Magnetization dynamics in the normal and superconducting phases of UPd2Al3: I Surveys in reciprocal space using neutron inelastic scattering. J. Phys.: Condens. Matter 18, R437 (2006).

    CAS  Google Scholar 

  28. Horn, S. et al. The magnetic behavior of CeB6: Comparison between elastic and inelastic neutron scattering, initial susceptibility and high-field magnetization. Z. Phys. B–Condens. Matter 42, 125–134 (1981).

    Article  CAS  Google Scholar 

  29. Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden-order state of URu2Si2 . Nature Phys. 3, 96–99 (2007).

    Article  CAS  Google Scholar 

  30. Stockert, O. et al. Magnetically driven superconductivity in CeCu2Si2 . Nature Phys. 7, 119–124 (2011).

    Article  CAS  Google Scholar 

  31. Stock, C., Broholm, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance in the d-wave superconductor CeCoIn5 . Phys. Rev. Lett. 100, 087001 (2008).

    Article  CAS  Google Scholar 

  32. Belitz, D., Kirkpatrick, T. R. & Vojta, T. First order transitions and multicritical points in weak itinerant ferromagnets. Phys. Rev. Lett. 82, 4707–4710 (1999).

    Article  CAS  Google Scholar 

  33. Chubukov, A. V., Pépin, C. & Rech, J. Instability of the quantum-critical point of itinerant ferromagnets. Phys. Rev. Lett. 92, 147003 (2004).

    Article  Google Scholar 

  34. Custers, J. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6 . Nature Mater. 11, 189–194 (2012).

    Article  CAS  Google Scholar 

Download references


We are grateful to S. V. Demishev, A. Ivanov, V. Kataev, A. Schneidewind, J. Sichelschmidt and P. Thalmeier for enlightening discussions. H.J. was supported by the Max Planck POSTECH Center for Complex Phase Materials with KR2011-0031558. D.S.I. acknowledges support from the German Research Foundation (DFG) under grant IN 209/3-1.

Author information

Authors and Affiliations



A.V.D., N.Yu.S. and V.B.F. synthesized the single-crystalline sample. H.J., G.F. and D.S.I. performed the INS experiments and analysed the data. H.J., G.F., B.K. and D.S.I. developed the physical interpretation. J.O. provided instrument support at ILL. H.J. and D.S.I. created the figures and wrote the manuscript. B.K. and D.S.I. supervised the project.

Corresponding author

Correspondence to D. S. Inosov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 556 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Friemel, G., Ollivier, J. et al. Intense low-energy ferromagnetic fluctuations in the antiferromagnetic heavy-fermion metal CeB6. Nature Mater 13, 682–687 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing