Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure

Abstract

Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures (HMFHs) have drawn great attention to spin torques arising from large spin–orbit coupling (SOC). Given the intrinsic strong SOC, topological insulators (TIs) are expected to be promising candidates for exploring spin–orbit torque (SOT)-related physics. Here we demonstrate experimentally the magnetization switching through giant SOT induced by an in-plane current in a chromium-doped TI bilayer heterostructure. The critical current density required for switching is below 8.9 × 104 A cm−2 at 1.9 K. Moreover, the SOT is calibrated by measuring the effective spin–orbit field using second-harmonic methods. The effective field to current ratio and the spin-Hall angle tangent are almost three orders of magnitude larger than those reported for HMFHs. The giant SOT and efficient current-induced magnetization switching exhibited by the bilayer heterostructure may lead to innovative spintronics applications such as ultralow power dissipation memory and logic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and magnetic properties of the (Bi0.5Sb0.5)2Te3/(Cr0.08Bi0.54Sb0.38)2Te3 bilayer heterostructure.
Figure 2: Magnetization switching due to the SOT induced by an in-plane d.c. current.
Figure 3: Second-harmonic AHE resistance as a function of the in-plane external magnetic field.
Figure 4: Harmonic signals and effective spin–orbit fields obtained from the rotation experiments.

Similar content being viewed by others

References

  1. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  2. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  3. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  4. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  5. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  6. Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011).

    Article  Google Scholar 

  7. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  8. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  9. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  Google Scholar 

  10. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  11. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    Article  CAS  Google Scholar 

  12. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nature Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  13. Vedyayev, A., Strelkov, N., Chshiev, M., Ryzhanova, N. & Dieny, B. Spin transfer torques induced by spin Hall effect. Preprint at http://arxiv.org/abs/1108.2589v1 (2011)

  14. Manchon, A. Spin Hall effect versus Rashba torque: A diffusive approach. Preprint at http://arxiv.org/abs/1204.4869 (2012)

  15. Wang, X. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  16. Pesin, D. A. & MacDonald, A. H. Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  17. Haney, P. M., Lee, H-W., Lee, K-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: Semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

  18. Kim, K-W., Seo, S-M., Ryu, J., Lee, K-J. & Lee, H-W. Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin–orbit coupling. Phys. Rev. B 85, 180404 (2012).

    Article  Google Scholar 

  19. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  20. Wang, X. & Manchon, A. Rashba spin torque in an ultrathin ferromagnetic metal layer. Preprint at http://arxiv.org/abs/1111.5466 (2011)

  21. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  22. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  23. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  25. Fischer, M. H., Vaezi, A., Manchon, A. & Kim, E-A. Large spin torque in topological insulator/ferromagnetic metal bilayers. Preprint at http://arxiv.org/abs/1305.1328 (2013)

  26. Mahfouzi, F., Nagaosa, N. & Nikolic, B. K. Spin-orbit coupling induced spin-transfer torque and current polarization in topological-insulator/ferromagnet vertical heterostructures. Phys. Rev. Lett. 109, 166602 (2012).

    Article  Google Scholar 

  27. Tserkovnyak, Y. & Loss, D. Thin-film magnetization dynamics on the surface of a topological insulator. Phys. Rev. Lett. 108, 187201 (2012).

    Article  Google Scholar 

  28. Kou, X. et al. Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13, 4587–4593 (2013).

    Article  CAS  Google Scholar 

  29. Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nature Phys. 8, 729–733 (2012).

    Article  CAS  Google Scholar 

  30. Chen, Y. L. et al. Massive Dirac Fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  CAS  Google Scholar 

  31. Wray, L. A. et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nature Phys. 7, 32–37 (2011).

    Article  CAS  Google Scholar 

  32. Chang, C-Z. et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

    Article  CAS  Google Scholar 

  33. Chang, C-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  Google Scholar 

  34. Kou, X. F. et al. Magnetically doped semiconducting topological insulators. J. Appl. Phys. 112, 063912 (2012).

    Article  Google Scholar 

  35. He, L. et al. Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett. 12, 1486–1490 (2012).

    Article  CAS  Google Scholar 

  36. Kou, X. et al. Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano 7, 9205–9212 (2013).

    Article  CAS  Google Scholar 

  37. Lang, M. et al. Revelation of topological surface states in Bi2Se3 thin films by in situ Al passivation. ACS Nano 6, 295–302 (2012).

    Article  CAS  Google Scholar 

  38. Yazyev, O. V., Moore, J. E. & Louie, S. G. Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles. Phys. Rev. Lett. 105, 266806 (2010).

    Article  Google Scholar 

  39. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  CAS  Google Scholar 

  40. Garate, I. & Franz, M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys. Rev. Lett. 104, 146802 (2010).

    Article  Google Scholar 

  41. Nomura, K. & Nagaosa, N. Electric charging of magnetic textures on the surface of a topological insulator. Phys. Rev. B 82, 161401 (2010).

    Article  Google Scholar 

  42. Mellnik, A. R. et al. Spin transfer torque generated by the topological insulator Bi2Se3. Preprint at http://arxiv.org/abs/1402.1124 (2014)

Download references

Acknowledgements

We are grateful for the support from the DARPA Meso programme under contract No. N66001-12-1-4034 and N66001-11-1-4105. We also acknowledge the support from the Western Institute of Nanoelectronics (WIN) and the support from the FAME Center, one of six centres of STARnet, a Semiconductor Research Corporation programme sponsored by MARCO and DARPA. P.U., X.K. and M.L. acknowledge partial support from the Qualcomm Innovation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.F., P.U., X.K. and K.L.W. conceived and designed the research. X.K. and L.H. grew the material. M.L. fabricated the Hall bar devices. Y.F., P.U. and X.K. performed the measurements. M.L., Z.W., J.T., L.H., L-T.C., M.M., G.Y., W.J., T.N. and R.N.S. contributed to the measurements and analysis. X.K. and T.N. performed structural analysis. Y.F., P.U., S.T. and Y.T. designed the theoretical model. Y.F., P.U., X.K. and K.L.W. wrote the paper with help from all of the other co-authors.

Corresponding authors

Correspondence to Yabin Fan, Liang He or Kang L. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Upadhyaya, P., Kou, X. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nature Mater 13, 699–704 (2014). https://doi.org/10.1038/nmat3973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing