Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity

Subjects

Abstract

Strongly coupled optical microcavities containing different exciton states permit the creation of hybrid-polariton modes that can be described in terms of a linear admixture of cavity-photon and the constituent excitons. Such hybrid states have been predicted to have optical properties that are different from their constituent parts, making them a test bed for the exploration of light–matter coupling. Here, we use strong coupling in an optical microcavity to mix the electronic transitions of two J-aggregated molecular dyes and use both non-resonant photoluminescence emission and photoluminescence excitation spectroscopy to show that hybrid-polariton states act as an efficient and ultrafast energy-transfer pathway between the two exciton states. We argue that this type of structure may act as a model system to study energy-transfer processes in biological light-harvesting complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microcavity structure supporting hybrid organic polaritons.
Figure 2: Characterization of the individual J-aggregates and a blended film.
Figure 3: Hybrid-polariton emission, population and mixing coefficients.
Figure 4: Angle- and wavelength-dependent PLE of the k = 0 LPB state, polariton absorption and relative relaxation efficiency into the LPB ground state.
Figure 5: Modelling of the polariton emission.

Similar content being viewed by others

References

  1. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  CAS  Google Scholar 

  2. Houdré, R. et al. Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett. 73, 2043–2046 (1994).

    Article  Google Scholar 

  3. Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56, 7554–7563 (1997).

    Article  CAS  Google Scholar 

  4. Butté, R. et al. Room-temperature polariton luminescence from a bulk GaN microcavity. Phys. Rev. B 73, 033315 (2006).

    Article  Google Scholar 

  5. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  CAS  Google Scholar 

  6. Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).

    Article  CAS  Google Scholar 

  7. Savvidis, P. G., Connolly, L. G., Skolnick, M. S., Lidzey, D. G. & Baumberg, J. J. Ultrafast polariton dynamics in strongly coupled zinc porphyrin microcavities at room temperature. Phys. Rev. B 74, 113312 (2006).

    Article  Google Scholar 

  8. Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316–3319 (1999).

    Article  CAS  Google Scholar 

  9. Schouwink, P., Berlepsch, H. V., Dähne, L. & Mahrt, R. F. Observation of strong exciton–photon coupling in an organic microcavity. Chem. Phys. Lett. 344, 352–356 (2001).

    Article  CAS  Google Scholar 

  10. Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  Google Scholar 

  11. Holmes, R. J. & Forrest, S. R. Strong exciton–photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93, 186404 (2004).

    Article  CAS  Google Scholar 

  12. Kéna-Cohen, S., Davanço, M. & Forrest, S. R. Strong exciton–photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008).

    Article  Google Scholar 

  13. Kéna-Cohen, S. & Forrest, S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  Google Scholar 

  14. Takada, N., Kamata, T. & Bradley, D. D. C. Polariton emission from polysilane-based organic microcavities. Appl. Phys. Lett. 82, 1812–1814 (2003).

    Article  CAS  Google Scholar 

  15. Agranovich, V., Benisty, H. & Weisbuch, C. Organic and inorganic quantum wells in a microcavity: Frenkel–Wannier–Mott excitons hybridization and energy transformation. Solid State Commun. 102, 631–636 (1997).

    Article  CAS  Google Scholar 

  16. Holmes, R. J., Kéna-Cohen, S., Menon, V. M. & Forrest, S. R. Strong coupling and hybridization of Frenkel and Wannier–Mott excitons in an organic–inorganic optical microcavity. Phys. Rev. B 74, 235211 (2006).

    Article  Google Scholar 

  17. Wenus, J. et al. Hybrid organic–inorganic exciton–polaritons in a strongly coupled microcavity. Phys. Rev. B 74, 235212 (2006).

    Article  Google Scholar 

  18. Lidzey, D. G., Bradley, D. D. C., Armitage, A., Walker, S. & Skolnick, M. S. Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science 288, 1620–1623 (2000).

    Article  CAS  Google Scholar 

  19. Lidzey, D. G. et al. Hybrid polaritons in strongly coupled microcavities: experiments and models. J. Lumin. 110, 347–353 (2004).

    Article  CAS  Google Scholar 

  20. Wainstain, J. et al. Dynamics of polaritons in a semiconductor multiple-quantum-well microcavity. Phys. Rev. B 58, 7269–7278 (1998).

    Article  CAS  Google Scholar 

  21. Lodden, G. H. & Holmes, R. J. Long-range, photon-mediated exciton hybridization in an all-organic, one-dimensional photonic crystal. Phys. Rev. Lett. 109, 096401 (2012).

    Article  Google Scholar 

  22. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  23. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  CAS  Google Scholar 

  24. Tischler, J. R. et al. Solid state cavity QED: Strong coupling in organic thin films. Org. Electron. 8, 94–113 (2007).

    Article  CAS  Google Scholar 

  25. Brumbaugh, D. V., Muenter, A. A., Knox, W., Mourou, G. & Wittmershaus, B. Singlet exciton annihilation in the picosecond fluorescence decay of 1,1’-diethyl-2,2’-cyanine chloride dye j-aggregate. J. Lumin. 3132, Part 2, 783–785 (1984).

    Article  Google Scholar 

  26. Sundström, V., Gillbro, T., Gadonas, R. A. & Piskarskas, A. Annihilation of singlet excitons in j aggregates of pseudoisocyanine (pic) studied by pico- and subpicosecond spectroscopy. J. Chem. Phys. 89, 2754–2762 (1988).

    Article  Google Scholar 

  27. Stiel, H., Daehne, S. & Teuchner, K. J-aggregates of pseudoisocyanine in solution: New data from nonlinear spectroscopy. J. Lumin. 39, 351–357 (1988).

    Article  CAS  Google Scholar 

  28. Moll, J., Harrison, W. J., Brumbaugh, D. V. & Muenter, A. A. Exciton annihilation in j-aggregates probed by femtosecond fluorescence upconversion. J. Phys. Chem. A 104, 8847–8854 (2000).

    Article  CAS  Google Scholar 

  29. Akselrod, G. M., Tischler, Y. R., Young, E. R., Nocera, D. G. & Bulović, V. Exciton–exciton annihilation in organic polariton microcavities. Phys. Rev. B 82, 113106 (2010).

    Article  Google Scholar 

  30. Andreani, L., Savona, V., Schwendimann, P. & Quattropani, A. Polaritons in high reflectivity microcavities: semiclassical and full quantum treatment of optical properties. Superlatt. Microstruct. 15, 453–458 (1994).

    Article  CAS  Google Scholar 

  31. Skolnick, M. S., Fisher, T. A. & Whittaker, D. M. Strong coupling phenomena in quantum microcavity structures. Semicond. Sci. Technol. 13, 645–669 (1998).

    Article  CAS  Google Scholar 

  32. Agranovich, V. M., Litinskaia, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 085311 (2003).

    Article  Google Scholar 

  33. Coles, D. M., Grant, R. T., Lidzey, D. G., Clark, C. & Lagoudakis, P. G. Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Phys. Rev. B 88, 121303 (2013).

    Article  Google Scholar 

  34. Michetti, P. & La Rocca, G. C. Simulation of j-aggregate microcavity photoluminescence. Phys. Rev. B 77, 195301 (2008).

    Article  Google Scholar 

  35. Michetti, P. & La Rocca, G. C. Exciton–phonon scattering and photoexcitation dynamics in j-aggregate microcavities. Phys. Rev. B 79, 035325 (2009).

    Article  Google Scholar 

  36. Michetti, P. & La Rocca, G. C. Simulation of the time dependent photoluminescence of a j-aggregate microcavity. Phys. Status Solidi C 6, 403–406 (2009).

    Article  CAS  Google Scholar 

  37. Agranovich, V. M., Litinskaya, M. & Lidzey, D. G. Microcavity polaritons in materials with weak intermolecular interaction. Phys. Status Solidi B 234, 130–138 (2002).

    Article  CAS  Google Scholar 

  38. Litinskaya, M., Reineker, P. & Agranovich, V. M. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004).

    Article  CAS  Google Scholar 

  39. Litinskaya, M., Reineker, P. & Agranovich, V. M. Exciton–polaritons in organic microcavities. J. Lumin. 119–120, 277–282 (2006).

    Article  Google Scholar 

  40. Chovan, J., Perakis, I. E., Ceccarelli, S. & Lidzey, D. G. Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Phys. Rev. B 78, 045320 (2008).

    Article  Google Scholar 

  41. Michetti, P. & La Rocca, G. C. Polariton states in disordered organic microcavities. Phys. Rev. B 71, 115320 (2005).

    Article  Google Scholar 

  42. Michetti, P. & Rocca, G. L. Polariton dynamics in disordered microcavities. Physica E 40, 1926–1929 (2008).

    Article  Google Scholar 

  43. Lidzey, D. G. et al. Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation. Phys. Rev. B 65, 195312 (2002).

    Article  Google Scholar 

  44. Coles, D. M., Michetti, P., Clark, C., Adawi, A. M. & Lidzey, D. G. Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Phys. Rev. B 84, 205214 (2011).

    Article  Google Scholar 

  45. Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

    Article  CAS  Google Scholar 

  46. Müller, M., Bleuse, J., André, A. & Ulmer-Tuffigo, H. Observation of bottleneck effects on the photoluminescence from polaritons in ii–iv microcavities. Physica B 272, 476–479 (1999).

    Article  Google Scholar 

  47. Tartakovskii, A. I. et al. Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283–R2286 (2000).

    Article  CAS  Google Scholar 

  48. Virgili, T. et al. Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Phys. Rev. B 83, 245309 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge R.T. Grant for the atomic force micrographs presented in the Supplementary Information. We acknowledge financial support for the work via the UK EPSRC through grant EP/G062404/1 and by the European Union through the FP7 funded project Icarus (237900).

Author information

Authors and Affiliations

Authors

Contributions

D.G.L. and D.M.C. conceived the experiment. Samples were prepared by C.C. and D.M.C. Steady-state measurements were performed by D.M.C. N.S. performed time-resolved measurements under the supervision of P.G.L. and P.G.S. The model was developed by P.M. All authors contributed to the interpretation of results and preparation of the manuscript.

Corresponding author

Correspondence to David G. Lidzey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coles, D., Somaschi, N., Michetti, P. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nature Mater 13, 712–719 (2014). https://doi.org/10.1038/nmat3950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing