Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

A Corrigendum to this article was published on 22 January 2016

This article has been updated

Abstract

The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the bacteria-instructed synthesis process.
Figure 2: The generation of a reductive environment during bacteria-instructed synthesis and evaluation of the cell-binding properties of the resultant polymers.
Figure 3: The demonstration of self-selective microbial binding by bacteria-instructed polymers.
Figure 4: Synthesis in the presence of pathogen analogue bacterial strains and in situ labelling of clinical isolates.

Change history

  • 07 January 2016

    In the version of this Article originally published, the fluorescence micrograph in Fig. 3b, the second panel on the lower row erroneously showed a micrograph that corresponded to Escherichia coli instead of Pseudomonas aeruginosa. This error has been corrected in the online versions of the Article.

References

  1. Bush, K. et al. Tackling antibiotic resistance. Nature Rev. Microbiol. 9, 894–896 (2011).

    Article  CAS  Google Scholar 

  2. Little, T. J., Allen, J. E., Babayan, S. A., Matthews, K. R. & Colegrave, N. Harnessing evolutionary biology to combat infectious disease. Nature Med. 18, 217–220 (2012).

    Article  CAS  Google Scholar 

  3. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  CAS  Google Scholar 

  4. Atkinson, S. & Williams, P. Quorum sensing and social networking in the microbial world. J. R. Soc. Interf. 6, 959–978 (2009).

    Article  CAS  Google Scholar 

  5. Lui, L. T. et al. Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes. Nature Chem. 5, 1058–1065 (2013).

    Article  CAS  Google Scholar 

  6. Haldar, J., An, D. Q., de Cienfuegos, L. A., Chen, J. Z. & Klibanov, A. M. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17667–17671 (2006).

    Article  CAS  Google Scholar 

  7. Liu, T-Y. et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nature Commun. 2, 538 (2011).

    Article  Google Scholar 

  8. Smith, E. J. et al. Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms. Lab Chip 12, 1917–1931 (2012).

    Article  CAS  Google Scholar 

  9. Qian, X. P. et al. Arrays of self-assembled monolayers for studying inhibition of bacterial adhesion. Anal. Chem. 74, 1805–1810 (2002).

    Article  CAS  Google Scholar 

  10. Aherne, A., Alexander, C., Payne, M. J., Perez, N. & Vulfson, E. N. Bacteria-mediated lithography of polymer surfaces. J. Am. Chem. Soc. 118, 8771–8772 (1996).

    Article  CAS  Google Scholar 

  11. Shepherd, J. et al. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin. Biomaterials 32, 258–267 (2011).

    Article  CAS  Google Scholar 

  12. Gestwicki, J. E. & Kiessling, L. L. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 415, 81–84 (2002).

    Article  CAS  Google Scholar 

  13. Krishnamurthy, V. M. et al. Promotion of opsonization by antibodies and phagocytosis of Gram-positive bacteria by a bifunctional polyacrylamide. Biomaterials 27, 3663–3674 (2006).

    CAS  Google Scholar 

  14. Schillinger, E., Moeder, M., Olsson, G. D., Nicholls, I. A. & Sellergren, B. An artificial estrogen receptor through combinatorial imprinting. Chem. Eur. J. 18, 14773–14783 (2012).

    Article  CAS  Google Scholar 

  15. Sellergren, B. Molecularly imprinted polymers shaping enzyme inhibitors. Nature Chem. 2, 7–8 (2010).

    Article  CAS  Google Scholar 

  16. Hoshino, Y. et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Natl Acad. Sci. USA 109, 33–38 (2012).

    Article  CAS  Google Scholar 

  17. Gudipaty, S. A., Larsen, A. S., Rensing, C. & McEvoy, M. M. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol. Lett. 330, 30–37 (2012).

    Article  CAS  Google Scholar 

  18. Pontel, L. B. & Soncini, F. C. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol. Microbiol. 73, 212–225 (2009).

    Article  CAS  Google Scholar 

  19. Yamamoto, K. & Ishihama, A. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56, 215–227 (2005).

    Article  CAS  Google Scholar 

  20. Ouchi, M., Badi, N., Lutz, J-F. & Sawamoto, M. Single-chain technology using discrete synthetic macromolecules. Nature Chem. 3, 917–924 (2011).

    Article  CAS  Google Scholar 

  21. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3746 (2001).

    Article  CAS  Google Scholar 

  22. McEwan, K. A. & Haddleton, D. M. Combining catalytic chain transfer polymerization (CCTP) and thio-Michael addition: Enabling the synthesis of peripherally functionalised branched polymers. Polym. Chem. 2, 1992–1999 (2011).

    Article  CAS  Google Scholar 

  23. Levere, M. E. et al. Assessment of SET-LRP in DMSO using online monitoring and Rapid GPC. Polym. Chem. 1, 1086–1094 (2010).

    Article  CAS  Google Scholar 

  24. Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chem. 1, 276–288 (2009).

    Article  CAS  Google Scholar 

  25. Oh, J. K. & Matyjaszewski, K. Synthesis of poly(2-hydroxyethyl methacrylate) in protic media through atom transfer radical polymerization using activators generated by electron transfer. J. Polym. Sci. A-Polym. Chem. 44, 3787–3796 (2006).

    Article  CAS  Google Scholar 

  26. Volentini, S. I., Farias, R. N., Rodriguez-Montelongo, L. & Rapisarda, V. A. Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. Biometals 24, 827–835 (2011).

    Article  CAS  Google Scholar 

  27. Rensing, C. & Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197–213 (2003).

    Article  CAS  Google Scholar 

  28. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harbor Perspec. Biol. 2, a000414 (2010).

    Article  Google Scholar 

  29. Caroff, M. & Karibian, D. Structure of bacterial lipopolysaccharides. Carbohydrate Res. 338, 2431–2447 (2003).

    Article  CAS  Google Scholar 

  30. Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide endotoxins. Ann. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  Google Scholar 

  31. Lienkamp, K., Madkour, A. E., Kumar, K-N., Nuesslein, K. & Tew, G. N. Antimicrobial polymers prepared by ring-opening metathesis polymerization: Manipulating antimicrobial properties by organic counterion and charge density variation. Chem. Eur. J. 15, 11715–11722 (2009).

    Article  CAS  Google Scholar 

  32. Liu, D. & Reeves, P. R. Escherichia-Coli K12 regains its O-antigen. Microbiol. UK 140, 49–57 (1994).

    Article  CAS  Google Scholar 

  33. Schneider, G. et al. The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect. Immun. 72, 5993–6001 (2004).

    Article  CAS  Google Scholar 

  34. Geng, J., Lindqvist, J., Mantovani, G. & Haddleton, D. M. Simultaneous copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and living radical polymerization. Angew. Chem. Int. Ed. 47, 4180–4183 (2008).

    Article  CAS  Google Scholar 

  35. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank GlaxoSmithKline, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) for funding (Grants BB/H53052X/1, EP/H005625/1, EP/G042462/1), M. Camara, S. Heeb and K. Righetti for providing the pyocyanin-negative PAO1 strain and C-Y. Chang for the E. coli 536 GFP strain. We also thank J.P. Magnusson for many helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to design of the experiments. E.P.M., C.A., G.M. and F.F-T. designed the polymer syntheses, K.W., D.C. and D.B. designed the microbiology assays. E.P.M., C.S. and S.G.S. carried out the experiments; C.A., E.P.M., G.M., F.F-T. and K.W. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Giuseppe Mantovani, Klaus Winzer or Cameron Alexander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4663 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magennis, E., Fernandez-Trillo, F., Sui, C. et al. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nature Mater 13, 748–755 (2014). https://doi.org/10.1038/nmat3949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing