Abstract

To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 104 s−1. By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. A roadmap for graphene. Nature 490, 192–200 (2012).

  2. 2.

    , & Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165–172 (2011).

  3. 3.

    Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 9, 211–223 (2009).

  4. 4.

    et al. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 20, 7864–7869 (2010).

  5. 5.

    , , , & Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

  6. 6.

    & Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

  7. 7.

    et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

  8. 8.

    , & Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2010).

  9. 9.

    et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

  10. 10.

    et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

  11. 11.

    et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

  12. 12.

    et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

  13. 13.

    et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

  14. 14.

    & Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J. Colloid Interface Sci. 306, 262–273 (2007).

  15. 15.

    & Monodispersed tantalum disulfide and adsorption complexes with cations. J. Chem. Phys. 62, 973–978 (1975).

  16. 16.

    & Chemical exfoliation of vermiculite and production of colloidal dispersions. Science 156, 385–387 (1967).

  17. 17.

    Method for producing thin graphite flakes with large aspect ratios. USA patent (1993)

  18. 18.

    Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites. US patent 20,080,258,359 A1 (2012)

  19. 19.

    & Liquid Mixing and Processing in Stirred Tanks (Reinhold, 1966).

  20. 20.

    et al. Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011).

  21. 21.

    , & Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48, 3703–3705 (2012).

  22. 22.

    , , , & High-concentration solvent exfoliation of graphene. Small 6, 864–871 (2010).

  23. 23.

    et al. Probing the nature of defects in graphene by raman spectroscopy. Nano Lett. 12, 3925–3930 (2012).

  24. 24.

    & in Handbook of Industrial Mixing: Science and Practice (eds Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M.) 19–87 (John Wiley, 2004).

  25. 25.

    , & Graphene arrested in laponite-water colloidal glass. Langmuir 28, 4009–4015 (2012).

  26. 26.

    , & Flow pattern, periodicity and energy dissipation in a batch rotor-stator mixer. Chem. Eng. Res. Des. 86, 1397–1409 (2008).

  27. 27.

    & Onset of turbulencein a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975).

  28. 28.

    , , , & Scaling up of Silverson rotor-stator mixers. Can. J. Chem. Eng. 89, 1040–1050 (2011).

  29. 29.

    & in Handbook of Industrial Mixing: Science and Practice (eds Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M.) 639–753 (John Wiley, 2004).

  30. 30.

    Bioprocess Engineering Principles (Academic, 1995).

  31. 31.

    , & Effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem. Eng. Res. Des. 87, 468–473 (2009).

  32. 32.

    & Proceedings of the International Congress for Particle Technology 1–4 (Partec, 2004).

  33. 33.

    & Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).

  34. 34.

    et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013).

  35. 35.

    , & Flexible, transparent dielectric capacitors with nanostructured electrodes. Appl. Phys. Lett. 101, 103106 (2012).

  36. 36.

    , & Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010).

  37. 37.

    et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Rep. 2, 870 (2012).

Download references

Acknowledgements

We thank Science Foundation Ireland (11/PI/1087), the European Research Council (SEMANTICS and 2DNanoCaps), the Graphene Flagship Project (no. 604391) and Thomas Swan for financial support. We acknowledge SuperSTEM and the CRANN Advanced Microscopy Laboratory for technical support.

Author information

Affiliations

  1. Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland

    • Keith R. Paton
    • , Eswaraiah Varrla
    • , Claudia Backes
    • , Ronan J. Smith
    • , Umar Khan
    • , Arlene O’Neill
    • , Conor Boland
    • , Mustafa Lotya
    • , Oana M. Istrate
    • , Paul King
    • , Tom Higgins
    • , Sebastian Barwich
    • , Peter May
    • , Pawel Puczkarski
    • , Henrik Pettersson
    • , Edmund Long
    • , João Coelho
    • , Sean E. O’Brien
    • , Eva K. McGuire
    • , Beatriz Mendoza Sanchez
    • , Georg S. Duesberg
    • , Niall McEvoy
    • , Clive Downing
    • , Valeria Nicolosi
    •  & Jonathan N. Coleman
  2. Thomas Swan and Company Limited, Rotary Way Consett DH8 7ND, UK

    • Keith R. Paton
  3. School of Physics, Trinity College Dublin, Dublin 2, Ireland

    • Eswaraiah Varrla
    • , Claudia Backes
    • , Ronan J. Smith
    • , Umar Khan
    • , Arlene O’Neill
    • , Conor Boland
    • , Mustafa Lotya
    • , Oana M. Istrate
    • , Paul King
    • , Tom Higgins
    • , Sebastian Barwich
    • , Peter May
    • , Pawel Puczkarski
    • , Iftikhar Ahmed
    • , Matthias Moebius
    • , Henrik Pettersson
    • , Edmund Long
    • , Sean E. O’Brien
    • , Eva K. McGuire
    • , Valeria Nicolosi
    •  & Jonathan N. Coleman
  4. School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

    • João Coelho
    • , Beatriz Mendoza Sanchez
    • , Georg S. Duesberg
    • , Niall McEvoy
    •  & Valeria Nicolosi
  5. SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane Warrington WA4 4AD, UK

    • Timothy J. Pennycook
  6. Department of Materials, University of Oxford, Parks Road Oxford OX1 3PH, UK

    • Timothy J. Pennycook
    •  & Alison Crossley

Authors

  1. Search for Keith R. Paton in:

  2. Search for Eswaraiah Varrla in:

  3. Search for Claudia Backes in:

  4. Search for Ronan J. Smith in:

  5. Search for Umar Khan in:

  6. Search for Arlene O’Neill in:

  7. Search for Conor Boland in:

  8. Search for Mustafa Lotya in:

  9. Search for Oana M. Istrate in:

  10. Search for Paul King in:

  11. Search for Tom Higgins in:

  12. Search for Sebastian Barwich in:

  13. Search for Peter May in:

  14. Search for Pawel Puczkarski in:

  15. Search for Iftikhar Ahmed in:

  16. Search for Matthias Moebius in:

  17. Search for Henrik Pettersson in:

  18. Search for Edmund Long in:

  19. Search for João Coelho in:

  20. Search for Sean E. O’Brien in:

  21. Search for Eva K. McGuire in:

  22. Search for Beatriz Mendoza Sanchez in:

  23. Search for Georg S. Duesberg in:

  24. Search for Niall McEvoy in:

  25. Search for Timothy J. Pennycook in:

  26. Search for Clive Downing in:

  27. Search for Alison Crossley in:

  28. Search for Valeria Nicolosi in:

  29. Search for Jonathan N. Coleman in:

Contributions

K.R.P., E.V. and P.P. performed the shear mixing and other experiments. A.O’N., M.L., P.M., R.J.S., H.P., E.L., J.C., S.E.O’B., B.M.S., E.Mc.G., T.J.P. and V.N. performed electron microscopy characterization and analysis. C.D. and A.C. performed XPS characterization and analysis. U.K., C. Boland, O.M.I., P.K., T.H. and I.A. performed applications measurements. C. Backes, N.Mc.E. and G.S.D. performed Raman and AFM analysis. S.B. and M.M. performed rheological characterization and analysis. J.N.C. designed the experiments, derived the models and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jonathan N. Coleman.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat3944

Further reading