Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Auxetic nuclei in embryonic stem cells exiting pluripotency


Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic force microscopy measurements of ESCs.
Figure 2: Optofluidic assay.
Figure 3: Normal and auxetic nuclei.
Figure 4: Auxeticity and chromatin condensation states.


  1. Betschinger, J. et al. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153, 335–347 (2013).

    Article  CAS  Google Scholar 

  2. Silva, J. & Smith, A. Capturing pluripotency. Cell 132, 532–536 (2008).

    Article  CAS  Google Scholar 

  3. Smith, A. Pluripotent stem cells: Private obsession and public expectation. EMBO Mol. Med. 2, 113–116 (2010).

    Article  CAS  Google Scholar 

  4. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  Google Scholar 

  5. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    Article  CAS  Google Scholar 

  6. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    Article  CAS  Google Scholar 

  7. Loh, K. M. & Lim, B. A precarious balance: Pluripotency factors as lineage specifiers. Cell Stem Cell 8, 363–369 (2011).

    Article  CAS  Google Scholar 

  8. Fisher, C. L. & Fisher, A. G. Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr. Opin. Genet. Dev. 21, 140–146 (2011).

    Article  CAS  Google Scholar 

  9. Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA 107, 9222–9227 (2010).

    Article  CAS  Google Scholar 

  10. Wray, J. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biol. 13, 838–845 (2011).

    Article  CAS  Google Scholar 

  11. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    Article  CAS  Google Scholar 

  12. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  Google Scholar 

  13. Franze, K. Atomic force microscopy and its contribution to understanding the development of the nervous system. Curr. Opin. Genet. Dev. 21, 530–537 (2011).

    Article  CAS  Google Scholar 

  14. Lu, Y. B. et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl Acad. Sci. USA 103, 17759–17764 (2006).

    Article  CAS  Google Scholar 

  15. Mahaffy, R. E., Park, S., Gerde, E., Kas, J. & Shih, C. K. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86, 1777–1793 (2004).

    Article  CAS  Google Scholar 

  16. Evans, K. E. & Alderson, A. Auxetic materials: Functional materials and structures from lateral thinking!. Adv Mater 12, 617 (2000).

    Article  CAS  Google Scholar 

  17. Trickey, W. R., Baaijens, F. P., Laursen, T. A., Alexopoulos, L. G. & Guilak, F. Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39, 78–87 (2006).

    Article  Google Scholar 

  18. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nature Mater. 12, 253–261 (2013).

    Article  CAS  Google Scholar 

  19. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  Google Scholar 

  20. Rowat, A. C. et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).

    Article  CAS  Google Scholar 

  21. Booth-Gauthier, E. A., Alcoser, T. A., Yang, G. & Dahl, K. N. Force-induced changes in subnuclear movement and rheology. Biophys. J. 103, 2423–2431 (2012).

    Article  CAS  Google Scholar 

  22. Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Mater. 9, 82–88 (2010).

    Article  CAS  Google Scholar 

  23. Dahl, K. N., Ribeiro, A. J. S. & Lammerding, J. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102, 1307–1318 (2008).

    Article  CAS  Google Scholar 

  24. Mazumder, A., Roopa, T., Basu, A., Mahadevan, L. & Shivashankar, G. V. Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys. J. 95, 3028–3035 (2008).

    Article  CAS  Google Scholar 

  25. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    Article  CAS  Google Scholar 

  26. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell. 10, 105–116 (2006).

    Article  CAS  Google Scholar 

  27. Chalut, K. J. et al. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys. J. 103, 2060–2070 (2012).

    Article  CAS  Google Scholar 

  28. Masui, O. et al. Live-Cell Chromosome Dynamics and Outcome of X Chromosome Pairing Events during ES Cell Differentiation. Cell. 145, 447–458 (2011).

    Article  CAS  Google Scholar 

  29. Blumenfeld, R. & Edwards, S. F. Theory of strains in auxetic materials. J. Supercond. Nov. Magn. 25, 565–571 (2012).

    Article  CAS  Google Scholar 

  30. Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).

    Article  CAS  Google Scholar 

  31. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  32. Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A. K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091 (2008).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Royal Society, UK Medical Research Council and Wellcome Trust (G.W.W., C.L.F. and K.J.C.), a European Research Council starting grant (S.P. and U.F.K.), a Human Frontier in Science Program grant (R.J.M.F and C.R.M.), a Leverhulme and Newton Trust Early Career Fellowship (S.P.) and the UK Medical Research Council (Career Development Award to K.F.). We also thank T. Kalkan for providing cells and guidance, A. Ekpenyong for experimental support, D. Morrison for assistance with electron microscopy, E. Paluch for critical reading of the manuscript, and A. Brown, A. Smith and J. Nichols for helpful discussions.

Author information

Authors and Affiliations



K.J.C. developed the project; K.F., R.J.M.F., U.F.K. and K.J.C. designed the research; S.P., K.F., G.W.W., C.R.M., C.L.F. and K.J.C performed the experiments; S.P., K.F., C.R.M., A.J.K., U.F.K. and K.J.C. analysed and discussed the data; S.P., K.F. and K.J.C. wrote the paper.

Corresponding authors

Correspondence to Stefano Pagliara, Kristian Franze or Kevin J. Chalut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2014 kb)

Supplementary Information

Supplementary Movie 1 (WMV 1453 kb)

Supplementary Information

Supplementary Movie 2 (WMV 729 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagliara, S., Franze, K., McClain, C. et al. Auxetic nuclei in embryonic stem cells exiting pluripotency. Nature Mater 13, 638–644 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing