Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal process-inert encoding architecture for polymer microparticles

Abstract

Polymer microparticles with unique, decodable identities are versatile information carriers with a small footprint. Widespread incorporation into industrial processes, however, is limited by a trade-off between encoding density, scalability and decoding robustness in diverse physicochemical environments. Here, we report an encoding strategy that combines spatial patterning with rare-earth upconversion nanocrystals, single-wavelength near-infrared excitation and portable CCD (charge-coupled device)-based decoding to distinguish particles synthesized by means of flow lithography. This architecture exhibits large, exponentially scalable encoding capacities (>106 particles), an ultralow decoding false-alarm rate (<10−9), the ability to manipulate particles by applying magnetic fields, and pronounced insensitivity to both particle chemistry and harsh processing conditions. We demonstrate quantitative agreement between observed and predicted decoding for a range of practical applications with orthogonal requirements, including covert multiparticle barcoding of pharmaceutical packaging (refractive-index matching), multiplexed microRNA detection (biocompatibility) and embedded labelling of high-temperature-cast objects (temperature resistance).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synthesis of encoded particles by stop-flow lithography.
Figure 2: Spectral characterization of UCNs.
Figure 3: CCD-based decoding of encoded particles.
Figure 4: Imaging of encoded particles with portable decoder in challenging settings.

References

  1. Cederquist, K., Dean, S. & Keating, C. Encoded anisotropic particles for multiplexed bioanalysis. WIREs Nanomed. Nanobiotechnol. 2, 578–600 (2010).

    Article  CAS  Google Scholar 

  2. Birtwell, S. & Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integrative Biol. 1, 345–362 (2009).

    Article  CAS  Google Scholar 

  3. Pregibon, D., Toner, M. & Doyle, P. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    Article  CAS  Google Scholar 

  4. Lee, H., Kim, J, Kim, H. & Kwon, S. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nature Mater. 9, 745–749 (2010).

    Article  CAS  Google Scholar 

  5. Braeckmans, K. et al. Encoding microcarriers by spatial selective photobleaching. Nature Mater. 2, 169–173 (2003).

    Article  CAS  Google Scholar 

  6. Mitrelias, T. et al. Enabling suspension-based biochemical assays with digital magnetic microtags. J. Appl. Phys. 107, 09B319 (2010).

    Article  Google Scholar 

  7. Dejneka, M. et al. Rare earth-doped glass microbarcodes. Proc. Natl Acad. Sci. USA 100, 389–393 (2003).

    Article  CAS  Google Scholar 

  8. Nicewarner-Pena, S. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  CAS  Google Scholar 

  9. Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nature Mater. 10, 877–883 (2011).

    Article  CAS  Google Scholar 

  10. Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chem. 4, 832–839 (2012).

    Article  CAS  Google Scholar 

  11. Appleyard, D., Chapin, S., Srinivas, R. & Doyle, P. Bar-coded hydrogel microparticles for protein detection: synthesis, assay and scanning. Nature Protocols 6, 1761–1774 (2011).

    Article  CAS  Google Scholar 

  12. Cunin, F. et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nature Mater. 1, 39–41 (2002).

    Article  CAS  Google Scholar 

  13. Zhao, Y. et al. Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Mater. 4, e25 (2012).

    Article  Google Scholar 

  14. Gerver, R. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab on a Chip 12, 4716–4723 (2012).

    Article  CAS  Google Scholar 

  15. Han, M., Gao, X., Su, J. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  16. Zhao, Y. et al. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc. 133, 8790–8793 (2011).

    Article  CAS  Google Scholar 

  17. Fulton, R., McDade, R., Smith, P., Kienker, L. & Kettman, J. Advanced multiplexed analysis with the FlowMetrix(TM) system. Clinical Chem. 43, 1749–1756 (1997).

    CAS  Google Scholar 

  18. Zhang, F. et al. Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small 7, 1972–1976 (2011).

    Article  CAS  Google Scholar 

  19. Mandecki, W. et al. Light-powered microtransponders for high multiplex-level analyses of nucleic acids. Microfabricated Sensors 815, 57–69 (2002).

    Article  CAS  Google Scholar 

  20. Battersby, B. et al. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc. 122, 2138–2139 (2000).

    Article  CAS  Google Scholar 

  21. Dendukuri, D., Gu, S., Pregibon, D., Hatton, T. & Doyle, P. Stop-flow lithography in a microfluidic device. Lab on a Chip 7, 818–828 (2007).

    Article  CAS  Google Scholar 

  22. Dendukuri, D., Pregibon, D., Collins, J., Hatton, T. & Doyle, P. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  23. Bong, K. et al. Non-polydimethylsiloxane devices for oxygen-free flow lithography. Nature Commun. 3, 805 (2012).

    Article  Google Scholar 

  24. Bong, K. W., Bong, K. T., Pregibon, D. & Doyle, P. Hydrodynamic Focusing Lithography. Angew. Chem. Int. Ed. 49, 87–90 (2010).

    Article  CAS  Google Scholar 

  25. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  26. Bogdan, N., Vetrone, F., Ozin, G. & Capobianco, J. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11, 835–840 (2011).

    Article  CAS  Google Scholar 

  27. Mahalingam, V., Vetrone, F., Naccache, R., Speghini, A. & Capobianco, J. Colloidal Tm3+/Yb3+-doped LiY F4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 21, 4025–4028 (2009).

    Article  CAS  Google Scholar 

  28. Wang, F. & Liu, X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaY F4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008).

    Article  CAS  Google Scholar 

  29. Chen, Z. et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023–3029 (2008).

    Article  CAS  Google Scholar 

  30. Gorris, H., Ali, R., Saleh, S. & Wolfbeis, O. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23, 1652–1655 (2011).

    Article  CAS  Google Scholar 

  31. Choi, N. et al. Multiplexed detection of mRNA using porosity-tuned hydrogel microparticles. Anal. Chem. 84, 9370–9378 (2012).

    Article  CAS  Google Scholar 

  32. Kim, J., Park, K., Kim, Z., Baek, K. & Do, L. Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area. Soft Matter 8, 1184–1189 (2012).

    Article  CAS  Google Scholar 

  33. Davidson, M. Pharmaceutical Anti-Counterfeiting: Combating the Real Danger from Fake Drugs (Wiley, (2011).

    Book  Google Scholar 

  34. Chapin, S., Appleyard, D., Pregibon, D. & Doyle, P. Rapid microRNA profiling on encoded gel microparticles. Angew. Chem. Int. Ed. 50, 2289–2293 (2011).

    Article  CAS  Google Scholar 

  35. Chapin, S. & Doyle, P. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Anal. Chem. 83, 7179–7185 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Capobianco for thoughtful guidance and M. Garcia Fierro for critical reading and perspective on the manuscript. The MIT Lincoln Laboratory portion of this work was sponsored by the Department of the Air Force under Air Force Contract number FA8721-05-C-0002. The MIT Campus portion of this work was sponsored by the Office of the Assistant Secretary of Defense for Research and Engineering, the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the US Army Research Office, and the Singapore–MIT Alliance and National Science Foundation grants CMMI-1120724 and DMR-1006147. R.L.S. was supported by an NIH T32 GM08334 interdepartmental biotechnology training grant. The work was also supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the US Army Research Office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and P.W.B. contributed equally to this work. J.L. designed the research, conducted most of the experiments, conducted design and synthesis of UCNs, interpreted data and wrote the manuscript. P.W.B. conceived the project, designed experiments, interpreted data, conducted design and synthesis of UCNs, and wrote the manuscript. R.L.S. designed and conducted bioassay experiments. J.J.K. participated in design and synthesis of UCNs. P.S.D. and A.J.S. conceived the project, discussed the results, supervised the study and interpreted data. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Patrick S. Doyle.

Ethics declarations

Competing interests

The authors declare Provisional US patent applications 61/801, 351 and 61/800, 995, filed 15 March 2013.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5700 kb)

Supplementary Information

Supplementary Movie 1 (AVI 2968 kb)

Supplementary Information

Supplementary Movie 2 (AVI 270 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Bisso, P., Srinivas, R. et al. Universal process-inert encoding architecture for polymer microparticles. Nature Mater 13, 524–529 (2014). https://doi.org/10.1038/nmat3938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing