Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bioinspired materials

Boosting plant biology

Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Natural and nanobionic chloroplasts.

References

  1. 1

    Graetzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Nature 488, 304–312 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Kramer, I. J., Levina, L., Debnath, R., Zhitomirsky, D. & Sa rgent, E. H. Nano Lett. 11, 3701–3706 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Giraldo, J. P. et al. Nature Mater. 13, 400–408 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Anderson, M. D., Xiao, Y-F. & Fraser, J. M. Phys. Rev. B 88, 045420 (2013).

    Article  Google Scholar 

  5. 5

    Green, B. R. & Parson, W. W. (eds) Light-Harvesting Antennas in Photosynthesis (Kluwer, 2003).

    Book  Google Scholar 

  6. 6

    Wastl, J. & Maier, U. G. J. Biol. Chem. 275, 23194–23198 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F. & Buchleitner, A. Energ. Environ. Sci. 5, 9374–9393 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Nature Chem. 3, 763–774 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Jumper, C. C. & Scholes, G. D. Phys. Life Rev. 11, 85–86 (2014).

    Article  Google Scholar 

  10. 10

    Blankenship, R. E. et al. Science 332, 805–809 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Adams, W. W., Cohu, C. M., Muller, O. & Demmig-Adams, B. Front. Plant Sci. 4, 194 (2013).

    Google Scholar 

  12. 12

    Rutherford, A. W., Osyczka, A. & Rappaport, F. FEBS Lett. 586, 603–616 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Armstrong, F. A. & Hirst, J. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Barber, J. Chem. Soc. Rev. 38, 185–196 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gregory D. Scholes or Edward H. Sargent.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scholes, G., Sargent, E. Boosting plant biology. Nature Mater 13, 329–331 (2014). https://doi.org/10.1038/nmat3926

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing