Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Bioinspired materials

Boosting plant biology

Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural and nanobionic chloroplasts.

References

  1. Graetzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Nature 488, 304–312 (2012).

    Article  CAS  Google Scholar 

  2. Kramer, I. J., Levina, L., Debnath, R., Zhitomirsky, D. & Sa rgent, E. H. Nano Lett. 11, 3701–3706 (2011).

    Article  CAS  Google Scholar 

  3. Giraldo, J. P. et al. Nature Mater. 13, 400–408 (2014).

    Article  CAS  Google Scholar 

  4. Anderson, M. D., Xiao, Y-F. & Fraser, J. M. Phys. Rev. B 88, 045420 (2013).

    Article  Google Scholar 

  5. Green, B. R. & Parson, W. W. (eds) Light-Harvesting Antennas in Photosynthesis (Kluwer, 2003).

    Book  Google Scholar 

  6. Wastl, J. & Maier, U. G. J. Biol. Chem. 275, 23194–23198 (2000).

    Article  CAS  Google Scholar 

  7. Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F. & Buchleitner, A. Energ. Environ. Sci. 5, 9374–9393 (2012).

    Article  CAS  Google Scholar 

  8. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Nature Chem. 3, 763–774 (2011).

    Article  CAS  Google Scholar 

  9. Jumper, C. C. & Scholes, G. D. Phys. Life Rev. 11, 85–86 (2014).

    Article  Google Scholar 

  10. Blankenship, R. E. et al. Science 332, 805–809 (2011).

    Article  CAS  Google Scholar 

  11. Adams, W. W., Cohu, C. M., Muller, O. & Demmig-Adams, B. Front. Plant Sci. 4, 194 (2013).

    Google Scholar 

  12. Rutherford, A. W., Osyczka, A. & Rappaport, F. FEBS Lett. 586, 603–616 (2012).

    Article  CAS  Google Scholar 

  13. Armstrong, F. A. & Hirst, J. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    Article  CAS  Google Scholar 

  14. Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).

    Article  CAS  Google Scholar 

  15. Barber, J. Chem. Soc. Rev. 38, 185–196 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory D. Scholes or Edward H. Sargent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholes, G., Sargent, E. Boosting plant biology. Nature Mater 13, 329–331 (2014). https://doi.org/10.1038/nmat3926

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3926

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research