Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials

Abstract

The intense interactions of guest molecules with the pore walls of nanoporous materials is the subject of continued fundamental research. Stimulated by their thermal energy, the guest molecules in these materials are subject to a continuous, irregular motion, referred to as diffusion. Diffusion, which is omnipresent in nature, influences the efficacy of nanoporous materials in reaction and separation processes. The recently introduced techniques of microimaging by interference and infrared microscopy provide us with a wealth of information on diffusion, hitherto inaccessible from commonly used techniques. Examples include the determination of surface barriers and the sticking coefficient's analogue, namely the probability that, on colliding with the particle surface, a molecule may continue its diffusion path into the interior. Microimaging is further seen to open new vistas in multicomponent guest diffusion (including the detection of a reversal in the preferred diffusion pathways), in guest-induced phase transitions in nanoporous materials and in matching the results of diffusion studies under equilibrium and non-equilibrium conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of microimaging.
Figure 2: Correlation of self- and transport diffusion.
Figure 3: Non-uniform surface of zeolite SAPO STA-7.
Figure 4: Unravelling the nature of surface barriers.
Figure 5: Diffusion anisotropy and mixture diffusion effects in FER-type zeolites.
Figure 6: Imaging of a guest-induced phase transition in MFI-type zeolite.

Similar content being viewed by others

References

  1. Ruthven, D. M., Farooq, S. & Knaebel, K. S. Pressure Swing Adsorption (VCH, 1994).

    Google Scholar 

  2. Schüth, F., Sing, K. S. W. & Weitkamp, J. (eds.) Handbook of Porous Solids (Wiley-VCH, 2002).

    Book  Google Scholar 

  3. Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  Google Scholar 

  4. Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340, 960–964 (2013).

    Article  CAS  Google Scholar 

  5. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  CAS  Google Scholar 

  6. Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J. (eds.) Handbook of Heterogeneous Catalysis 2nd edn (Wiley-VCH, 2008).

    Book  Google Scholar 

  7. Corma, A., Nemeth, L. T., Renz, M. & Valencia, S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature 412, 423–425 (2001).

    Article  CAS  Google Scholar 

  8. Perez-Ramirez, J. Zeolite nanosystems: imagination has no limits. Nature Chem. 4, 250–251 (2012).

    Article  CAS  Google Scholar 

  9. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–724 (2001).

    Article  CAS  Google Scholar 

  10. Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chem. 2, 633–637 (2010).

    Article  CAS  Google Scholar 

  11. Li, J-R. et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature Commun. 4, 1538 (2013).

    Article  CAS  Google Scholar 

  12. Yanai, N. et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Mater. 10, 787–793 (2011).

    Article  CAS  Google Scholar 

  13. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  14. Sato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nature Mater. 9, 661–666 (2010).

    Article  CAS  Google Scholar 

  15. Laeri, F., Schüth, F., Simon, U. & Wark, M. (eds.) Host-Guest-Systems Based on Nanoporous Crystals (Wiley-VCH, 2003).

    Book  Google Scholar 

  16. Kärger, J., Ruthven, D. M. & Theodorou, D. N. Diffusion in Nanoporous Materials (Wiley-VCH, 2012).

    Book  Google Scholar 

  17. Tsotsalas, M. et al. Impact of molecular clustering inside nanopores on desorption processes. J. Am. Chem. Soc. 135, 4608–4611 (2013).

    Article  CAS  Google Scholar 

  18. Ruthven, D. M., Brandani, S. & Eic, M. in Adsorption and Diffusion (eds Karge, H. G. & Weitkamp, J.) 45–85 (Springer, 2008).

    Book  Google Scholar 

  19. Kärger, J. & Caro, J. Interpretation and correlation of zeolitic diffusivities obtained from nuclear magnetic resonance and sorption experiments. J. Chem. Soc. Faraday Trans. I 73, 1363–1376 (1977).

    Article  Google Scholar 

  20. Valiullin, R. et al. Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 430, 965–968 (2006).

    Article  CAS  Google Scholar 

  21. Price, W. S. NMR Studies of Translational Motion (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  22. Kimmich, R. Principles of Soft-Matter Dynamics (Springer, 2012).

    Book  Google Scholar 

  23. Kärger, J. et al. NMR study of mass transfer in granulated molecular sieves. AIChE J. 34, 1185–1189 (1988).

    Article  Google Scholar 

  24. Vasenkov, S. et al. PFG NMR study of diffusion in MFI-type zeolites: evidence of the existence of intracrystalline transport barriers. J. Phys. Chem. B 105, 5922–5927 (2001).

    Article  CAS  Google Scholar 

  25. Yashonath, S., Demontis, P. & Klein, M. L. A molecular-dynamics study of methane in zeolite NaY. Chem. Phys. Lett. 153, 551–556 (1988).

    Article  CAS  Google Scholar 

  26. Theodorou, D. N., Snurr, R. Q. & Bell, A. T. in Comprehensive Supramolecular Chemistry (eds Alberti, G. & Bein, T.) 507–548 (Pergamon, 1996).

    Google Scholar 

  27. Keil, F. J., Krishna, R. & Coppens, M. O. Modeling of diffusion in zeolites. Rev. Chem. Eng. 16, 71–197 (2000).

    Article  CAS  Google Scholar 

  28. Jobic, H., Bee, M., Caro, J., Bülow, M. & Kärger, J. Molecular self-diffusion of methane in zeolite ZSM-5 by quasi-elastic neutron-scattering and nuclear magnetic-resonance pulsed field gradient technique. J. Chem. Soc. Faraday Trans. I 85, 4201–4209 (1989).

    Article  CAS  Google Scholar 

  29. Jobic, H. in Catalyst Characterization: Physical Techniques for Solid Materials (ed. Imelik, B. V. J. C.) 347–376 (Plenum, 1994).

    Book  Google Scholar 

  30. Jobic, H., Kärger, J. & Bee, M. Simultaneous measurement of self- and transport diffusivities in zeolites. Phys. Rev. Lett. 82, 4260–4263 (1999).

    Article  CAS  Google Scholar 

  31. Kirstein, J. et al. Exploration of nanostructured channel systems with single-molecule probes. Nature Mater. 6, 303–310 (2007).

    Article  CAS  Google Scholar 

  32. Zürner, A., Kirstein, J., Döblingern, M., Bräuchle, C. & Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 450, 705–709 (2007).

    Article  CAS  Google Scholar 

  33. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  34. Weckhuysen, B. M. (ed.) In-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 39, 4541–5072 (2010).

    Article  CAS  Google Scholar 

  35. Feil, F. et al. Single-particle and ensemble diffusivities — test of ergodicity. Angew. Chem. Int. Ed. 51, 1152–1155 (2012).

    Article  CAS  Google Scholar 

  36. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chem. 4, 873–886 (2012).

    Article  CAS  Google Scholar 

  37. Schemmert, U., Kärger, J. & Weitkamp, J. Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites. Micropor. Mesopor. Mater. 32, 101–110 (1999).

    Article  CAS  Google Scholar 

  38. Geier, O. et al. Interference microscopy investigation of the influence of regular intergrowth effects in MFI-type zeolites on molecular uptake. J. Phys. Chem. B 105, 10217–10222 (2001).

    Article  CAS  Google Scholar 

  39. Lehmann, E. et al. Inhomogeneous distribution of water adsorbed under low pressure in CrAPO-5 and SAPO-5: an interference microscopy study. J. Phys. Chem. B 107, 4685–4687 (2003).

    Article  CAS  Google Scholar 

  40. Schüth, F. Polarized Fourier transform infrared microscopy as a tool for structural analysis of adsorbates in molecular sieves. J. Phys. Chem. 96, 7493–7496 (1992).

    Article  Google Scholar 

  41. Schüth, F. & Althoff, R. Analysis of active-site distribution in ZSM-5 crystals by infrared microscopy. J. Catal. 143, 338–394 (1993).

    Article  Google Scholar 

  42. Müller, G., Narbeshuber, T. F., Mirth, G. & Lercher, J. A. IR microscopic study of sorption and diffusion of toluene in ZSM5. J. Phys. Chem. B 98, 7436–7439 (1994).

    Article  Google Scholar 

  43. Schüth, F., Demuth, D. & Kallus, S. in Studies in Surface Science and Catalysis, Vol. 84. Zeolites and Related Microporous Materials: State of the Art 1994 — Proc. 10th Int. Zeolite Conference (eds Weitkamp, J., Karge, H. G., Pfeifer, H. & Hölderich, W.) 1223–1229 (Elsevier, 1994).

    Book  Google Scholar 

  44. Hermann, M., Niessen, W. & Karge, H. G. in Catalysis by Microporous Materials (eds Beyer, H. K., Karge, H. G., Kiricsi, I. & Nagy, J. B.) 131–138 (Elsevier, 1995).

    Book  Google Scholar 

  45. Lehmann, E. et al. Regular intergrowth in the AFI type crystals: influence on the intracrystalline adsorbate distribution as observed by interference and FTIR-microscopy. J. Am. Chem. Soc. 124, 8690–8692 (2002).

    Article  CAS  Google Scholar 

  46. Chmelik, C. FTIR Microscopy as a Tool for Studying Molecular Transport in Zeolites PhD thesis, Univ. Leipzig (2007).

    Google Scholar 

  47. Karge, H. G. & Kärger, J. in Adsorption and Diffusion (eds Karge, H. G. & Weitkamp, J.) 135–206 (Springer, 2008).

    Book  Google Scholar 

  48. Stavitski, E. et al. In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. Angew. Chem. Int. Ed. 47, 3543–3547 (2008).

    Article  CAS  Google Scholar 

  49. Stavitski, E. & Weckhuysen, B. M. Infrared and Raman imaging of heterogeneous catalysts. Chem. Soc. Rev. 39, 4615–4625 (2010).

    Article  CAS  Google Scholar 

  50. Barrer, R. M. Intracrystalline diffusion. Adv. Chem. Ser. 102, 1–9 (1971).

    Article  CAS  Google Scholar 

  51. Barrer, R. M. & Clarke, D. J. J. Diffusion of some n-paraffins in zeolite A. Chem. Soc. Faraday Trans. I 70, 535–548 (1974).

    Article  CAS  Google Scholar 

  52. Ruthven, D. M. Principles of Adsorption and Adsorption Processes (Wiley, 1984).

    Google Scholar 

  53. Chmelik, C. & Kärger, J. In-situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 39, 4864–4884 (2010).

    Article  CAS  Google Scholar 

  54. Krishna, R. & Wesselingh, J. A. Chem. Eng. Sci. 45, 1779–1791 (1990).

    Article  CAS  Google Scholar 

  55. Krishna, R. Describing the diffusion of guest molecules inside porous structures. J. Phys. Chem. C 113, 19756–19781 (2009).

    Article  CAS  Google Scholar 

  56. Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 3099–3118 (2012).

    Article  CAS  Google Scholar 

  57. Krishna, R. & van Baten, J. M. Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials. Phys. Chem. Chem. Phys. 15, 7994–8016 (2013).

    Article  CAS  Google Scholar 

  58. Prigogine, I. The End Of Certainty (The Free Press, 1997).

    Google Scholar 

  59. Kärger, J., Petzold, M., Pfeifer, H., Ernst, S. & Weitkamp, J. Single-file diffusion and reaction in zeolites. J. Catal. 136, 283–299 (1992).

    Article  Google Scholar 

  60. Kukla, V. et al. NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702–704 (1996).

    Article  CAS  Google Scholar 

  61. Burada, P. S., Hänggi, P., Marchesoni, F., Schmid, G. & Talkner, P. Diffusion in confined geometries. ChemPhysChem 40, 45–54 (2009).

    Article  CAS  Google Scholar 

  62. Kärger, J. in Adsorption and Diffusion (eds Karge, H. G. & Weitkamp, J.) 329–366 (Springer, 2008).

    Book  Google Scholar 

  63. Barrer, R. M. & Jost, W. A note on interstitial diffusion. Trans. Faraday Soc. 45, 928–930 (1949).

    Article  CAS  Google Scholar 

  64. Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, 1978).

    Google Scholar 

  65. Kärger, J. Some remarks on the straight and cross coefficients of irreversible thermodynamics of surface flow and on the relation between diffusion and self-diffusion. Surf. Sci. 36, 797–801 (1973).

    Article  Google Scholar 

  66. Darken, L. S. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. Am. Inst. Min. Met. Eng. 175, 184–175 (1948).

    Google Scholar 

  67. Chmelik, C. et al. Mass transfer in a nanoscale material enhanced by an opposing flux. Phys. Rev. Lett. 104, 085902 (2010).

    Article  CAS  Google Scholar 

  68. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

  69. Zhang, K., Lively, R. P., Zhang, C., Koros, W. J. & Chance, R. R. Investigating the intrinsic ethanol/water separation capability of ZIF-8: an adsorption and diffusion study. J. Phys. Chem. C 117, 7214–7225 (2013).

    Article  CAS  Google Scholar 

  70. Kärger, J. A study of fast tracer desorption in molecular sieve crystals. AIChE J. 28, 417–423 (1982).

    Article  Google Scholar 

  71. Kärger, J., Bülow, M., Millward, B. R. & Thomas, J. M. A phenomenological study of surface barriers in zeolites. Zeolites 6, 146–150 (1986).

    Article  Google Scholar 

  72. Caro, J., Bülow, M., Jobic, H., Kärger, J. & Zibrowius, B. Molecular mobility measurement of hydrocarbons in zeolites by NMR techniques. Adv. Catal. 39, 351–414 (1993).

    CAS  Google Scholar 

  73. Wright, P. A. et al. Cation-directed syntheses of novel zeolite-like metalloaluminophosphates STA-6 and STA-7 in the presence of azamacrocycle templates. J. Chem. Soc. Dalton Trans. 1243–1248 (2000).

  74. Castro, M. et al. Co-templating and modelling in the rational synthesis of zeolitic solids. Chem. Commun. 3470–3472 (2007).

  75. Tzoulaki, D. et al. Assessing nanoporous materials by interference microscopy: remarkable dependence of molecular transport on composition and microstructure in the silicoaluminophosphate zeotype STA-7. J. Am. Chem. Soc. 132, 11665–11670 (2010).

    Article  CAS  Google Scholar 

  76. Pan, L. et al. Zn(tbip): a highly stable guest-free mircoporous metal organic framework with unique gas separation capability. J. Am. Chem. Soc. 128, 4180–4181 (2006).

    Article  CAS  Google Scholar 

  77. Tzoulaki, D. et al. Assessing surface permeabilities from transient guest profiles in nanoporous materials. Angew. Chem. Int. Ed. 48, 3525–3528 (2009).

    Article  CAS  Google Scholar 

  78. Hibbe, F. et al. The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J. Am. Chem. Soc. 133, 2804–2807 (2011).

    Article  CAS  Google Scholar 

  79. Heinke, L. & Kärger, J. Correlating surface permeability with intracrystalline diffusivity in nanoporous solids. Phys. Rev. Lett. 106, 074501 (2011).

    Article  CAS  Google Scholar 

  80. Sholl, D. S. A porous maze. Nature Chem. 3, 429–430 (2011).

    Article  CAS  Google Scholar 

  81. Hibbe, F. et al. Monitoring molecular mass transfer in cation-free nanoporous host-crystals of type AlPO-LTA. J. Am. Chem. Soc. 134, 7725–7732 (2012).

    Article  CAS  Google Scholar 

  82. Sierra, L., Deroche, C., Gies, H. & Guth, J. L. Synthesis of new microporous AlPO4 and substituted derivatives with the LTA structure. Micropor. Mater. 3, 29–38 (1994).

    Article  Google Scholar 

  83. Corma, A., Rey, F., Rius, J., Sabater, M. J. & Valencia, S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431, 287–290 (2004).

    Article  CAS  Google Scholar 

  84. Huang, A., Liang, F., Steinbach, F., Gesing. T. M. & Caro, J. Neutral and cation-free LTA-type aluminophosphate (AlPO4) molecular sieve membrane with high hydrogen permeselectivity. J. Am. Chem. Soc. 132, 2140–2141 (2010).

    Article  CAS  Google Scholar 

  85. Ruthven, D. M. in Adsorption and Diffusion (eds Karge, H. G. & Weitkamp, J.) 1–43 (Springer, 2008).

    Book  Google Scholar 

  86. Ruthven, D. M. Diffusion in type A zeolites: new insights from old data. Micropor. Mesopor. Mater. 162, 69–79 (2012).

    Article  CAS  Google Scholar 

  87. Dudko, O. K., Berezhkovskii, A. M. & Weiss, G. H. Time-dependent diffusion coefficients in periodic porous materials. J. Phys. Chem. B 109, 21296–21299 (2005).

    Article  CAS  Google Scholar 

  88. Freund, H. J. in Handbook of Heterogeneous Catalysis 2nd edn, Vol. 2 (eds Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J.) 1375–1415 (Wiley-VCH, 2008).

    Google Scholar 

  89. Atkins, P. W. & de Paula, J. Physical Chemistry 8th edn (Oxford Univ. Press, 2006).

    Google Scholar 

  90. Chmelik, C. et al. Ensemble measurement of diffusion: novel beauty and evidence. ChemPhysChem 10, 2623–2627 (2009).

    Article  CAS  Google Scholar 

  91. Binder, T. Mass Transport in Nanoporous Materials: New Insights from Micro-Imaging by Interference Microscopy PhD thesis, Univ. Leipzig (2013).

    Google Scholar 

  92. Tzoulaki, D., Schmidt, W., Wilczok, U. & Kärger, J. Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy. Micropor. Mesopor. Mater. 110, 72–76 (2008).

    Article  CAS  Google Scholar 

  93. Chmelik, C. et al. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution. Micropor. Mesopor. Mater. 129, 340–344 (2010).

    Article  CAS  Google Scholar 

  94. Derouane, E. G. & Gabelica, Z. A novel effect of shape selectivity: molecular traffic control in zeolite ZSM-5. J. Catal. 65, 486–489 (1980).

    Article  CAS  Google Scholar 

  95. Neugebauer, N., Bräuer, P. & Kärger, J. Reactivity enhancement by molecular traffic control. J. Catal. 194, 1–3 (2000).

    Article  CAS  Google Scholar 

  96. Clark, L. A., Ye, G. T. & Snurr, R. Q. Molecular traffic control in a nanoscale system. Phys. Rev. Lett. 84, 2893–2896 (2000).

    Article  CAS  Google Scholar 

  97. Vaughan, P. A. The crystal structure of the zeolite ferrierite. Acta Crystallogr. 21, 983–990 (1966).

    Article  CAS  Google Scholar 

  98. Morris, R. E. et al. Synchrotron X-ray diffraction, neutron diffraction, 29Si MAS-NMR, and computational study of the siliceous form of zeolite ferrierite. J. Am. Chem. Soc. 116, 11849–11855 (1994).

    Article  CAS  Google Scholar 

  99. Rakoczy, R. A. et al. Synthesis of large crystals of all-silica zeolite ferrierite. Micropor. Mesopor. Mater. 104, 1195–1203 (2007).

    Article  CAS  Google Scholar 

  100. Marthala, V. R. R. et al. Solvothermal synthesis and characterization of large-crystal all-silica, aluminum-, and boron-containing ferrierite zeolites. Chem. Mater. 23, 2521–2528 (2011).

    Article  CAS  Google Scholar 

  101. Kortunov, P. et al. Internal concentration gradients of guest molecules in nanoporous host materials: measurement and microscopic analysis. J. Phys. Chem. B 110, 23821–23828 (2006).

    Article  CAS  Google Scholar 

  102. Hibbe, F., Marthala, R., Chmelik, C., Weitkamp, J. & Kärger, J. Micro-imaging of transient guest profiles in nanochannels. J. Chem. Phys. 135, 184201 (2011).

    Article  CAS  Google Scholar 

  103. Hibbe, F. Micro-Imaging Employed to Study Diffusion and Surface Permeation in Porous Materials PhD thesis, Univ. Leipzig (2012).

    Google Scholar 

  104. Krishna, R. & van Baten, J. M. Mutual slowing-down effects in mixture diffusion in zeolites. J. Phys. Chem. C 113, 13154–13156 (2010).

    Article  CAS  Google Scholar 

  105. Caro, J., Noack, M. & Kolsch, P. Zeolite membranes: from the laboratory scale to technical applications. Adsorption 11, 215–227 (2005).

    Article  CAS  Google Scholar 

  106. Gücüyener, C., van den Bergh, J., Gascon, J. & Kapteijn, F. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132, 17704–17706 (2010).

    Article  CAS  Google Scholar 

  107. Ferey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  CAS  Google Scholar 

  108. Salles, F. et al. Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr): a combination of quasi-elastic neutron scattering measurements and molecular dynamics simulations. Angew. Chem. Int. Ed. 121, 8485–8489 (2009).

    Article  Google Scholar 

  109. Lincke, J. et al. A novel copper-based MOF material: synthesis, characterization and adsorption studies. Micropor. Mesopor. Mater. 142, 62–69 (2011).

    Article  CAS  Google Scholar 

  110. Van Koeningsveld, H., Tuinstra, F., van Bekkum, H. & Jansen, C. J. The location of p-xylene in a single crystal of zeolite H-ZSM-5 with a new, sorbate-induced, orthorhombic framework symmetry. Acta Crystallogr. B 45, 423–431 (1989).

    Article  Google Scholar 

  111. Fyfe, C. A., Kennedy, G. J., Schutter, C. T. de & Kokotailo, G. T. Sorbate-induced structural changes in ZSM-5 (silicalite). J. Chem. Soc. Chem. Commun. 541–542 (1984).

  112. Fyfe, C. A., Strobl, H., Gies, H. & Kokotailo, G. T. High-resolution solid-state NMR investigation of the nature of the interaction between organic substrates and the zeolite ZSM-5 lattice. Can. J. Chem. 66, 1942–1947 (1988).

    Article  CAS  Google Scholar 

  113. Snurr, R. Q., Bell, A. T. & Theodorou, D. N. Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insert-ions. J. Phys. Chem. 97, 13742–13752 (1993).

    Article  CAS  Google Scholar 

  114. Snurr, R. Q., Bell, A. T. & Theodorou, D. N. A hierarchical atomistic/lattice simulation approach for the prediction of adsorption thermodynamics of benzene in silicalite. J. Phys. Chem. 98, 5111–5119 (1994).

    Article  CAS  Google Scholar 

  115. Lee, C-K. & Chiang, A. S. T. Adsorption of aromatic compounds in large MFI zeolite crystals. J. Chem. Soc. Faraday Trans. 92, 3445–3451 (1996).

    Article  CAS  Google Scholar 

  116. Song, L., Sun, Z-L., Ban, H-Y., Dai, M. & Rees, L. V. C. Benzene adsorption in microporous materials. Adsorption 11, 325–339 (2005).

    Article  CAS  Google Scholar 

  117. Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nature Mater. 8, 959–965 (2009).

    Article  CAS  Google Scholar 

  118. Kärger, J. Random walk through two-channel networks: a simple means to correlate the coefficients of anisotropic diffusion in ZSM-5 type zeolite. J. Phys. Chem. 95, 5558–5560 (1991).

    Article  Google Scholar 

  119. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  120. Na, K. et al. Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011).

    Article  CAS  Google Scholar 

  121. Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S. & Matsui, H. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nature Mater. 11, 1081–1085 (2012).

    Article  CAS  Google Scholar 

  122. Kärger, J. Leipzig, Einstein, Diffusion 2nd edn (Leipziger Universitätsverlag, 2010).

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the German Science Foundation (DFG) and the Netherlands Organization for Scientific Research (NWO) (via the International Research Training Group 'Diffusion in Porous Materials', and the DFG research unit FOR 877 'From Local Constraints to Macroscopic Transport'), DECHEMA (via Max-Buchner-Forschungsstiftung) and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kärger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kärger, J., Binder, T., Chmelik, C. et al. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature Mater 13, 333–343 (2014). https://doi.org/10.1038/nmat3917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing