Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent optically induced magnetism in oxygen-deficient strontium titanate

Abstract

Strontium titanate (SrTiO3) is a foundational material in the emerging field of complex oxide electronics. Although its bulk electronic and optical properties are rich and have been studied for decades, SrTiO3 has recently become a renewed focus of materials research catalysed in part by the discovery of superconductivity and magnetism at interfaces between SrTiO3 and other non-magnetic oxides. Here we illustrate a new aspect to the phenomenology of magnetism in SrTiO3 by reporting the observation of an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO3−δ crystals using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18 K, persists for hours below 10 K, and is tunable by means of the polarization and wavelength of sub-bandgap (400–500 nm) light. These effects occur only in crystals containing oxygen vacancies, revealing a detailed interplay between magnetism, lattice defects, and light in an archetypal complex oxide material.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optically induced magnetization in oxygen-deficient SrTiO3−δ at zero applied magnetic field.
Figure 2: Persistence of the optically induced magnetization in SrTiO3−δ.
Figure 3: Controlling the induced magnetization in SrTiO3−δ by the pump wavelength.
Figure 4: Magneto-optical properties of SrTiO3 and SrTiO3:Nb single crystals after creating and removing oxygen vacancies.
Figure 5: MCD spectra from SrTiO3 − δ in an applied magnetic field.

Similar content being viewed by others

References

  1. Ramesh, R. & Schlom, D. G. Whither oxide electronics? Mater. Res. Soc. Bull. 33, 1006–1011 (2008).

    Article  Google Scholar 

  2. Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009).

    Article  CAS  Google Scholar 

  3. Mannhart, J. & Schlom, D. G. Oxide interfaces–an opportunity for electronics. Science 327, 1607–1611 (2010).

    Article  CAS  Google Scholar 

  4. Chambers, S. A. Epitaxial growth and properties of doped transition metal and complex oxide films. Adv. Mater. 22, 219–248 (2010).

    Article  CAS  Google Scholar 

  5. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J-M. Interface physics in complex oxides heterostructures. Annu. Rev. Cond. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  6. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  7. Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nature Mater. 11, 92–94 (2012).

    Article  CAS  Google Scholar 

  8. Granozio, F. M., Koster, G. & Rijnders, G. Functional oxide interfaces. Mater. Res. Soc. Bull. 38, 1017–1063 (2013).

    Article  CAS  Google Scholar 

  9. Mattheiss, L. F. Energy bands for KNiF3, SrTiO3, KMoO3, and KTaO3 . Phys. Rev. B 6, 4718–4739 (1972).

    Article  CAS  Google Scholar 

  10. Mattheiss, L. F. Effect of the 110 K phase transition on the SrTiO3 conduction bands. Phys. Rev. B 6, 4740–4753 (1972).

    Article  CAS  Google Scholar 

  11. Neville, R. C., Hoeneisen, B. & Mead, C. A. Permittivity of strontium titanate. J. Appl. Phys. 43, 2124–2131 (1972).

    Article  CAS  Google Scholar 

  12. Müller, K. A. & Burkard, H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    Article  Google Scholar 

  13. Yamada, H. & Miller, G. R. Point defects in reduced strontium titanate. J. Solid State Chem. 6, 169–177 (1973).

    Article  CAS  Google Scholar 

  14. Lee, C., Destry, J. & Brebner, J. L. Optical absorption and transport in semiconducting SrTiO3 . Phys. Rev. B 11, 2299–2310 (1975).

    Article  CAS  Google Scholar 

  15. Faughnan, B. W. Photochromism in transition-metal-doped SrTiO3 . Phys. Rev. B 4, 3623–3636 (1971).

    Article  Google Scholar 

  16. Wild, R. L., Rockar, E. M. & Smith, J. C. Thermochromism and electrical conductivity in doped SrTiO3 . Phys. Rev. B 8, 3828–3835 (1973).

    Article  CAS  Google Scholar 

  17. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  18. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  19. Ariando, et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nature Commun. 2, 188 (2011).

    Article  CAS  Google Scholar 

  20. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    Article  CAS  Google Scholar 

  21. Moetakef, P. et al. Carrier-controlled ferromagnetism in SrTiO3 . Phys. Rev. X 2, 021014 (2012).

    Google Scholar 

  22. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    Article  CAS  Google Scholar 

  23. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys. 7, 767–771 (2011).

    Article  CAS  Google Scholar 

  24. Fitzsimmons, M. R. et al. Upper limit to magnetism in LaAlO3/SrTiO3 heterostructures. Phys. Rev. Lett. 107, 217201 (2011).

    Article  CAS  Google Scholar 

  25. Lee, J-S. et al. Titanium d xy ferromagnetism at the LaAlO3/SrTiO3 interface. Nature Mater. 12, 703–706 (2013).

    Article  CAS  Google Scholar 

  26. Salluzzo, M. et al. Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures. Phys. Rev. Lett. 111, 087204 (2013).

    Article  CAS  Google Scholar 

  27. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).

    Article  CAS  Google Scholar 

  28. Eckstein, J. N. Watch out for the lack of oxygen. Nature Mater. 6, 473 (2007).

    Article  CAS  Google Scholar 

  29. Kalabukhov, A. et al. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404(R) (2007).

    Article  Google Scholar 

  30. Hou, Z. & Terakura, K. Defect states induced by oxygen vacancies in cubic SrTiO3: First-principles calculations. J. Phys. Soc. Jpn 79, 114704 (2010).

    Article  Google Scholar 

  31. Shen, J., Lee, H., Valentí, R. & Jeschke, H. O. Ab initio study of the two-dimensional metallic states at the surface of SrTiO3: Importance of oxygen vacancies. Phys. Rev. B 86, 195119 (2012).

    Article  Google Scholar 

  32. Pavlenko, N., Kopp, T., Tsymbal, E. Y., Sawatzky, G. A. & Mannhart, J. Magnetic and superconducting phases at the LaAlO3/SrTiO3 interface: The role of interfacial Ti 3d electrons. Phys. Rev. B 85, 020407(R) (2012).

    Article  Google Scholar 

  33. Pavlenko, N., Kopp, T., Tsymbal, E. Y., Mannhart, J. & Sawatzky, G. A. Oxygen vacancies at titanate interfaces: Two-dimensional magnetism and orbital reconstruction. Phys. Rev. B. 86, 064431 (2012).

    Article  Google Scholar 

  34. Lin, C., Mitra, C. & Demkov, A. A. Orbital ordering under reduced symmetry in transition metal perovskites: Oxygen vacancy in SrTiO3 . Phys. Rev. B 86, 161102(R) (2012).

    Article  Google Scholar 

  35. Lin, C. & Demkov, A. A. Electron correlation in oxygen vacancy in SrTiO3 . Phys. Rev. Lett. 111, 217601 (2013).

    Article  Google Scholar 

  36. Lee, M., Williams, J. R., Zhang, S., Frisbie, C. D. & Goldhaber-Gordon, D. Electrolyte gate-controlled Kondo effect in SrTiO3 . Phys. Rev. Lett. 107, 256601 (2011).

    Article  Google Scholar 

  37. Lee, Y. et al. Phase diagram of electrostatically doped SrTiO3 . Phys. Rev. Lett. 106, 136809 (2011).

    Article  Google Scholar 

  38. Spinelli, A., Torija, M. A., Liu, C., Jan, C. & Leighton, C. Electronic transport in doped SrTiO3: Conduction mechanisms and potential applications. Phys. Rev. B 81, 155110 (2010).

    Article  Google Scholar 

  39. Stephens, P. J. Theory of magnetic circular dichroism. J. Chem. Phys. 52, 3489 (1970).

    Article  CAS  Google Scholar 

  40. Zvanut, M. E. et al. An annealing study of an oxygen-vacancy related defect in SrTiO3 substrates. J. Appl. Phys. 104, 064122 (2008).

    Article  Google Scholar 

  41. Son, J. et al. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V−1 s−1. Nature Mater. 9, 482–484 (2010).

    Article  CAS  Google Scholar 

  42. Berney, R. L. & Cowan, D. L. Photochromism of three photosensitive Fe centers in SrTiO3 . Phys. Rev. B 23, 37–50 (1981).

    Article  CAS  Google Scholar 

  43. Santander-Syro, A. F. et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 . Nature 469, 189–193 (2011).

    Article  CAS  Google Scholar 

  44. Meevasana, W. et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nature Mater. 10, 114–118 (2011).

    Article  CAS  Google Scholar 

  45. Blazey, K. W., Aguilar, M., Bednorz, J. G. & Müller, K. A. Valence-band splitting of SrTiO3 . Phys. Rev. B 27, 5836–5838 (1983).

    Article  CAS  Google Scholar 

  46. Mooney, P. M. Deep donor levels (DX centers) in III-V semiconductors. J. Appl. Phys. 67, R1 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.L. Smith, Q. Jia, A.V. Balatsky and P. Littlewood for helpful discussions. Student support from M. Bayer (TU-Dortmund) is gratefully acknowledged. This work was supported by the Los Alamos LDRD program under the auspices of the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Work at UMN supported in part by the NSF under DMR-0804432 and in part by the MRSEC Program of the NSF under DMR-0819885.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and S.A.C. conceived the experiments. P.A., G.H. and C.L. prepared and characterized the samples. W.D.R., M.B., J.D.T. and S.A.C. performed the optical studies and SQUID measurements. W.D.R., C.L. and S.A.C. wrote the paper in consultation with all authors.

Corresponding author

Correspondence to S. A. Crooker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, W., Ambwani, P., Bombeck, M. et al. Persistent optically induced magnetism in oxygen-deficient strontium titanate. Nature Mater 13, 481–487 (2014). https://doi.org/10.1038/nmat3914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing