Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis and patterning of tunable multiscale materials with engineered cells

Abstract

Many natural biological systems—such as biofilms, shells and skeletal tissues—are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Inducible production of engineered curli fibrils and biofilms.
Figure 2: Conversion of timing and amplitude of chemical inducer signals into material structure and composition.
Figure 3: Synthetic cellular communication for dynamic, autonomous material production and patterning.
Figure 4: Multiscale patterning with cellular consortia via synthetic gene regulation combined with inducer gradients and subunit engineering.
Figure 5: Environmentally switchable conductive biofilms and cell-based synthesis of curli-templated nanowires and nanorods.
Figure 6: Assembly and tuning of functional AuNP-QD heterostructures, and nucleation of fluorescent ZnS QDs on cell-synthesized curli fibrils.

References

  1. 1

    Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  2. 2

    Kollmannsberger, P., Bidan, C. M., Dunlop, J. W. C. & Fratzl, P. The physics of tissue patterning and extracellular matrix organisation: How cells join forces. Soft Matter 7, 9549–9560 (2011).

    Article  CAS  Google Scholar 

  3. 3

    Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  4. 4

    O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000).

    Article  Google Scholar 

  5. 5

    Epstein, A. K., Pokroy, B., Seminara, A. & Aizenberg, J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc. Natl Acad. Sci. USA 108, 995–1000 (2011).

    Article  Google Scholar 

  6. 6

    Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58 (1996).

    Article  CAS  Google Scholar 

  7. 7

    Su, X. W., Zhang, D. M. & Heuer, A. H. Tissue regeneration in the shell of the Giant Queen Conch, Strombus gigas. Chem. Mater. 16, 581–593 (2004).

    Article  CAS  Google Scholar 

  8. 8

    Aizenberg, J. et al. Skeleton of Euplectella sp: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    Article  CAS  Google Scholar 

  9. 9

    Weiner, S. & Wagner, H. D. The material bone: Structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    Article  CAS  Google Scholar 

  10. 10

    Brenner, K. & Arnold, F. H. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PloS ONE 6, e16791 (2011).

    Article  CAS  Google Scholar 

  11. 11

    Brenner, K., Karig, D. K., Weiss, R. & Arnold, F. H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl Acad. Sci. USA 104, 17300–17304 (2007).

    Article  Google Scholar 

  12. 12

    Hong, S. H. et al. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nature Commun. 3, 613 (2012).

    Article  CAS  Google Scholar 

  13. 13

    Ma, Q., Yang, Z., Pu, M., Peti, W. & Wood, T. K. Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ. Microbiol. 13, 631–642 (2011).

    Article  CAS  Google Scholar 

  14. 14

    Lee, J., Jayaraman, A. & Wood, T. K. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7, 42 (2007).

    Article  CAS  Google Scholar 

  15. 15

    Payne, S. et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol. 9, 697 (2013).

    Article  CAS  Google Scholar 

  16. 16

    Payne, S. & You, L. Engineered cell–cell communication and its applications. Adv. Biochem. Eng./Biotechnol. http://dx.doi.org/10.1007/10_2013_249 (2013).

  17. 17

    Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  Google Scholar 

  18. 18

    Callura, J. M., Cantor, C. R. & Collins, J. J. Genetic switchboard for synthetic biology applications. Proc. Natl Acad. Sci. USA 109, 5850–5855 ( 2012).

    Article  Google Scholar 

  19. 19

    Prigent-Combaret, C. et al. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: Role of flagella, curli and colanic acid. Environ. Microbiol. 2, 450–464 (2000).

    Article  CAS  Google Scholar 

  20. 20

    Vidal, O. et al. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: Involvement of a new ompR allele that increases curli expression. J. Bacteriology 180, 2442–2449 (1998).

    CAS  Google Scholar 

  21. 21

    Hung, C. et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 4, e00645–e00613 (2013).

    Google Scholar 

  22. 22

    Wang, X., Hammer, N. D. & Chapman, M. R. The molecular basis of functional bacterial amyloid polymerization and nucleation. J. Biol. Chem. 283, 21530–21539 (2008).

    Article  CAS  Google Scholar 

  23. 23

    Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  Google Scholar 

  24. 24

    Bacchus, W et al. Synthetic two-way communication between mammalian cells. Nature Biotechnol. 30, 991–996 (2012).

    Article  CAS  Google Scholar 

  25. 25

    Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    Article  Google Scholar 

  26. 26

    Liu, C. et al. Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011).

    Article  CAS  Google Scholar 

  27. 27

    Jang, B., Park, J. Y., Tung, C. H., Kim, I. H. & Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5, 1086–1094 (2011).

    Article  CAS  Google Scholar 

  28. 28

    Dreaden, E. C. et al. Small molecule-gold nanorod conjugates selectively target and induce macrophage cytotoxicity towards breast cancer cells. Small 8, 2819–2822 (2012).

    Article  CAS  Google Scholar 

  29. 29

    Libutti, S. K. et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clinical Cancer Research: An Official J. Am. Assoc. Can. Res. 16, 6139–6149 (2010).

    Article  CAS  Google Scholar 

  30. 30

    Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  Google Scholar 

  31. 31

    Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

    Article  CAS  Google Scholar 

  32. 32

    Reineck, P. et al. A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv. Mater. 24, 4750–4755 (2012).

    Article  CAS  Google Scholar 

  33. 33

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  CAS  Google Scholar 

  34. 34

    Yuan, Z. L. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  CAS  Google Scholar 

  35. 35

    Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl Acad. Sci. USA 100, 6946–6951 (2003).

    Article  CAS  Google Scholar 

  36. 36

    Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  37. 37

    King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012)10.1126/science.1219364.

    CAS  Article  Google Scholar 

  38. 38

    Mart, R. J., Osborne, R. D., Stevens, M. M. & Ulijn, R. V. Peptide-based stimuli-responsive biomaterials. Soft Matter 2, 822–835 (2006).

    Article  CAS  Google Scholar 

  39. 39

    Webber, M. J. et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl Acad. Sci. USA 108, 13438–13443 (2011).

    Article  Google Scholar 

  40. 40

    So, C. R., Tamerler, C. & Sarikaya, M. Adsorption, diffusion, and self-assembly of an engineered gold-binding peptide on Au(111) investigated by atomic force microscopy. Angew. Chem. Int. Ed. 48, 5174–5177 (2009).

    Article  CAS  Google Scholar 

  41. 41

    Channon, K. J., Devlin, G. L. & MacPhee, C. E. Efficient energy transfer within self-assembling peptide fibers: A route to light-harvesting nanomaterials. J. Am. Chem. Soc. 131, 12520–12521 (2009).

    Article  CAS  Google Scholar 

  42. 42

    Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003).

    Article  CAS  Google Scholar 

  43. 43

    Smith, J. F., Knowles, T. P., Dobson, C. M., Macphee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    Article  CAS  Google Scholar 

  44. 44

    Felgner, P. L. et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  Google Scholar 

  45. 45

    Winfree, E., Liu,, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  46. 46

    Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  47. 47

    Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Mater. 11, 986–994 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Hwang, S. W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    Article  CAS  Google Scholar 

  49. 49

    Amsden, J. J. et al. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 22, 1746–1749 (2010).

    Article  CAS  Google Scholar 

  50. 50

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  51. 51

    Prewitz, M. C. et al. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods 10, 788–794 (2013).

    Article  CAS  Google Scholar 

  52. 52

    Chiu, W. K. & Yu, K. M. Direct digital manufacturing of three-dimensional functionally graded material objects. Computer-Aided Design 40, 1080–1093 (2008).

    Article  Google Scholar 

  53. 53

    Xia, Y., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999).

    Article  CAS  Google Scholar 

  54. 54

    Kolodkin-Gal, I. et al. D-amino acids trigger biofilm disassembly. Science 328, 627–629 (2010).

    Article  CAS  Google Scholar 

  55. 55

    Gubeli, R. J., Burger, K. & Weber, W. Synthetic biology for mammalian cell technology and materials sciences. Biotechnol. Adv. 31, 68–78 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. J. Collins (Biomedical Engineering, Boston University) for donating riboregulator plasmids, R. Weiss (Electrical Engineering and Computer Science, MIT) for the gift of a LuxI plasmid, C. Dorel (Biosciences Department, INSA Lyon) for the gift of E. coli MG1655 ompR234, M. Chapman (Department of Molecular, Cellular, and Developmental Biology, University of Michigan Ann Arbor) for the gift of anti-CsgA antibodies, K. Ribbeck (Department of Biological Engineering, MIT) for use of confocal microscopy facilities, and L. Cameron (Confocal and Light Microscopy Core, Dana Farber Cancer Institute) for assistance with FLIM. We thank C. Zhong, K. Lowenhaupt and P. Siuti from the Lu lab, S. Keating from the lab of N. Oxman (Media Lab, MIT), K. Frederick from the lab of S. Lindquist, S. Lindquist (Whitehead Institute), and E. Dreaden from the lab of P. Hammond (Chemical Engineering, MIT) for helpful discussions. We thank C. Zhong from the Lu lab for the gift of purified CsgA protein. We also thank M. Mimee and O. Purcell from the Lu lab for a close reading of this manuscript. This work was supported by the Office of Naval Research and the Army Research Office. This work was also supported in part by the MRSEC Program of the National Science Foundation under award number DMR-0819762. A.Y.C. acknowledges graduate research support from the Hertz Foundation, the Department of Defense, and NIH Medical Scientist Training Program grant T32GM007753. A.N.B. acknowledges support from NIH-NIEHS Training Grant in Toxicology 5 T32 ES7020-37. T.K.L. acknowledges support from the Presidential Early Career Award for Scientists and Engineers and the NIH New Innovator Award (1DP2OD008435).

Author information

Affiliations

Authors

Contributions

T.K.L. and A.Y.C. conceived the experiments. A.Y.C., Z.D., A.N.B., U.O.S.S., M.Y.L. and R.J.C. performed the experiments, A.Y.C., Z.D., A.N.B. and T.K.L. analysed the data, discussed results, and wrote the manuscript.

Corresponding author

Correspondence to Timothy K. Lu.

Ethics declarations

Competing interests

T.K.L. and A.Y.C. have filed a provisional application based on this work with the US Patent and Trademark Office.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3789 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, A., Deng, Z., Billings, A. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Mater 13, 515–523 (2014). https://doi.org/10.1038/nmat3912

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing