Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermodynamic evidence for valley-dependent density of states in bulk bismuth

Abstract

Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis1. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention2. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Angle-dependent magnetostriction measurements.
Figure 2: High-field Landau spectrum in the Bθ plane.
Figure 3: Valley-dependent DOS.

References

  1. Dresselhaus, M. S. Electronic properties of the group V semimetals. J. Phys. Chem. Solids 32,

  2. Zhu, Z., Collaudin, A., Fauqu’e, B., Kang, W. & Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2012).

    CAS  Article  Google Scholar 

  3. Agricola, G. De Natura Fossilium Mineralogical Society of America New York, 178 (1546 orig. 1955 trans.)

  4. Garland, H. & Bannister, C. O. Ancient Egyptian Metallurgy (Charles Griffen, (1927).

    Google Scholar 

  5. Edelman, V. S. Electrons in bismuth. Adv. Phys. 25, 555–613 (1976).

    CAS  Article  Google Scholar 

  6. Ettingshausen, A. V. & Nernst, W. Ueber das Auftreten electromotorischer Kräfte in Metallplatten, welche von einem Wärmestrome durchflossen werden und sich im magnetischen Felde befinden. Ann. Phys. 265, 343–347 (1886).

    Article  Google Scholar 

  7. Behnia, K., M’easson, M-A. & Kopelevich, Y. Oscillating Nernst–Ettingshausen effect in bismuth across the quantum limit. Phys. Rev. Lett. 98, 166602 (2007).

    Article  Google Scholar 

  8. Halperin, B. I Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn J. Appl. Phys. Suppl. 26, 1913–1919 (1987).

    CAS  Article  Google Scholar 

  9. Behnia, K., Balicas, L. & Kopelevich, Y. Signatures of electron fractionalization in ultraquantum bismuth. Science 317, 1729–1731 (2007).

    CAS  Article  Google Scholar 

  10. Li, L. et al. Phase transitions of Dirac electrons in bismuth. Science 321, 547–550 (2008).

    CAS  Article  Google Scholar 

  11. Alicea, J. & Balents, L. Bismuth in strong magnetic fields: Unconventional Zeeman coupling and correlation effects. Phys. Rev. B 79, 241101 (2009).

    Article  Google Scholar 

  12. Sharlai, Y. V. & Mikitik, G. P. Origin of the peaks in the Nernst coefficient of bismuth in strong magnetic fields. Phys. Rev. B 79, 081102 (2009).

    Article  Google Scholar 

  13. Vecchi, M. P, Pereira, J. R. & Dresselhaus, M. S. Anomalies in the magnetoreflection spectrum of bismuth in the low-quantum-number limit. Phys. Rev. B 14, 298–317 (1976).

    CAS  Article  Google Scholar 

  14. McClure, J. W. The energy band model for bismuth: Resolution of a theoretical discrepancy. J. Low Temp. Phys. 25, 527–540 (1976).

    CAS  Article  Google Scholar 

  15. Zhu, Z., Fauqu’e, B., Fuseya, Y. & Behnia, K. Angle-resolved Landau spectrum of electrons and holes in bismuth. Phys. Rev. B 84, 115137 (2011).

    Article  Google Scholar 

  16. Zhu, Z. et al. Landau spectrum and twin boundaries of bismuth in the extreme quantum limit. Proc. Natl Acad. Sci. USA 109, 14813–14818 (2012).

    CAS  Article  Google Scholar 

  17. Parameswaran, S. A. & Oganesyan, V. Unfinished bismuth. Nature Phys. 8, 7–8 (2012).

    CAS  Article  Google Scholar 

  18. Chandrasekhar, B. S. A note on the possibility of observing De Haas-Van Alphen oscillations in magnetostriction. Phys. Lett. 6, 27–28 (1963).

    Article  Google Scholar 

  19. Aron, P. R. & Chandrasekhar, B. S. Oscillatory magnetostriction and deformation potentials in bismuth. Phys. Lett. 30, 86–87 (1969).

    CAS  Article  Google Scholar 

  20. Kuechler, R., Bauer, T., Brando, M. & Steglich, F. A Compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction. Rev. Sci. Instrum. 83, 095102 (2012).

    Article  Google Scholar 

  21. Efros, A. L. & Shklovskii, B. I Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49–L51 (1975).

    CAS  Article  Google Scholar 

  22. Bompadre, S. G., Biagini, C., Maslov, D. & Hebard, A. F. Unambiguous determination of the g factor for holes in bismuth at high B/T. Phys. Rev. B 64, 073103 (2001).

    Article  Google Scholar 

  23. Chandrasekhar, B. S. & Fawcett, E. Magnetostriction in metals. Adv. Phys. 20, 775–794 (1971).

    CAS  Article  Google Scholar 

  24. Michenaud, J. P., Heremans, J., Shayegan, M. & Haumont, C. Magnetostriction of bismuth in quantizing magnetic fields. Phys. Rev. B 26, 2552–2559 (1982).

    CAS  Article  Google Scholar 

  25. Shoenberg, D. Theory of the de Haas-van Alphen effect. J. Phys. F 18, 49–61 (1988).

    Article  Google Scholar 

  26. Keyes, R. W. Electronic effects in the elastic properties of semiconductors. Solid State Phys. 20, 37–90 (1967).

    Article  Google Scholar 

  27. Yang, H. et al. Phase diagram of bismuth in the extreme quantum limit. Nature Commun. 1, 47 (2010).

    Article  Google Scholar 

  28. Brandt, N. B., Kul’bachinskii, V. A., Minina, N. Ya. & Shirokikh, V. D Change of the band structure and electronic phase transitions in Bi and Bi1−xSbx alloys under uniaxial tension strains. J. Exp. Theor. Phys. 51, 562 (1980).

    Google Scholar 

  29. Abanin, D. A., Parameswaran, S. A., Kivelson, S. A. & Sondhi, S. L. Nematic valley ordering in quantum Hall systems. Phys. Rev. B 82, 035428 (2010).

    Article  Google Scholar 

  30. Fauqu’e, B. et al. Hall plateaus at magic angles in bismuth beyond the quantum limit. Phys. Rev. B 79, 245124 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Geibel, P. Gegenwart, J. Alicea, L. Balents, M. Doerr, B. Fauqué and Y. Fuseya for valuable discussions, as well as T. Lühmann and N. Oeschler for technical and organizational support. R.K. is supported by the DFG Research Unit 960 (Quantum Phase Transitions). K.B. is supported by ANR through the QUANTHERM project and acknowledges the hospitality of the Aspen Center for Physics.

Author information

Authors and Affiliations

Authors

Contributions

R.K. designed and fabricated the dilatometer and built the experimental set-up. R.K. and L.S. performed the measurements. M.B. and R.D. contributed to the data analysis. L.S., R.K. and K.B. wrote the manuscript with input from all other authors. K.B. instigated the project.

Corresponding authors

Correspondence to R. Küchler or L. Steinke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 879 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Küchler, R., Steinke, L., Daou, R. et al. Thermodynamic evidence for valley-dependent density of states in bulk bismuth. Nature Mater 13, 461–465 (2014). https://doi.org/10.1038/nmat3909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3909

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing