Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional broadband omnidirectional acoustic ground cloak

Abstract

The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems1,2,3,4,5,6,7,8,9,10,11,12,13,14, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations10,15. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of the pyramid-shaped acoustic ground cloak.
Figure 2: Snapshots of the fabricated cloak.
Figure 3: Experimental set-up and qualitative results.
Figure 4: Measured signals at three different locations, A, B and C.

References

  1. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    CAS  Article  Google Scholar 

  2. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    CAS  Google Scholar 

  3. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Article  Google Scholar 

  4. Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007).

    Article  Google Scholar 

  5. Chen, H. Y. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007).

    Article  Google Scholar 

  6. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    CAS  Article  Google Scholar 

  7. Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).

    Article  Google Scholar 

  8. Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    CAS  Article  Google Scholar 

  9. Chen, X. et al. Macroscopic invisibility cloaking of visible light. Nature Commun. 2, 176 (2011).

    CAS  Article  Google Scholar 

  10. Popa, B-I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011).

    Article  Google Scholar 

  11. Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).

    Article  Google Scholar 

  12. Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012).

    Article  Google Scholar 

  13. Landy, N. & Smith, D. R. A full-parameter unidirectional metamaterial cloak for microwaves. Nature Mater. 12, 25–28 (2013).

    CAS  Article  Google Scholar 

  14. Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: Molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013).

    Article  Google Scholar 

  15. Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011).

    Article  Google Scholar 

  16. Cummer, S. A., Rahm, M. & Schurig, D. Material parameters and vector scaling in transformation acoustics. New J. Phys. 10, 115025 (2008).

    Article  Google Scholar 

  17. Li, J. & Pendry, J. B. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).

    Article  Google Scholar 

  18. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    CAS  Article  Google Scholar 

  19. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    CAS  Article  Google Scholar 

  20. Garcia-Chocano, V. M. et al. Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99, 074102 (2011).

    Article  Google Scholar 

  21. Sanchis, L. et al. Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110, 124301 (2013).

    CAS  Article  Google Scholar 

  22. Li, W., Guan, J., Sun, Z., Wang, W. & Zhang, Q. A near-perfect invisibility cloak constructed with homogeneous materials. Opt. Express 17, 23410–23416 (2009).

    CAS  Article  Google Scholar 

  23. Zhang, J., Luo, Y. & Mortensen, N. A. Transmission of electromagnetic waves through sub-wavelength channels. Opt. Express 18, 3864–3870 (2010).

    Article  Google Scholar 

  24. Weiren, Z., Changlin, D. & Xiaopeng, Z. A numerical method for designing acoustic cloak with homogeneous metamaterials. Appl. Phys. Lett. 97, 131902 (2010).

    Article  Google Scholar 

  25. Popa, B-I. & Cummer, S. A. Homogeneous and compact acoustic ground cloaks. Phys. Rev. B 83, 224304 (2011).

    Article  Google Scholar 

  26. Zigoneanu, L., Popa, B. I., Starr, A. & Cummer, S. A. Design and measurements of a broadband 2D acoustic metamaterial with anisotropic mass density. J. Appl. Phys. 109, 054906 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Multidisciplinary University Research Initiative grants from the Office of Naval Research (N00014-13-1-0631) and from the Army Research Office (W911NF-09-1-00539).

Author information

Authors

Contributions

B-I.P. and L.Z. performed the simulations. L.Z. conducted the fabrication, experimental design and measurements. All three authors equally contributed to the development of the project and to the text of the paper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1279 kb)

Supplementary Information

Supplementary Movie S1 (AVI 1005 kb)

Supplementary Information

Supplementary Movie S2 (AVI 960 kb)

Supplementary Information

Supplementary Movie S3 (AVI 517 kb)

Supplementary Information

Supplementary Movie S4 (AVI 498 kb)

Supplementary Information

Supplementary Movie S5 (AVI 496 kb)

Supplementary Information

Supplementary Movie S6 (AVI 511 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zigoneanu, L., Popa, BI. & Cummer, S. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Mater 13, 352–355 (2014). https://doi.org/10.1038/nmat3901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing