Quantum criticality in a metallic spin liquid


When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating ‘spin liquid’ state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr2Ir2O7, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

Figure 1: Schematic phase diagram for geometrically frustrated Kondo lattice systems.
Figure 2: Low-temperature specific heat and entropy of Pr2Ir2O7.
Figure 3: Divergent behaviour of the magnetic Grüneisen ratio, ΓH, of Pr2Ir2O7 as function of temperature.
Figure 4: Evidence of a zero-field quantum critical point in Pr2Ir2O7.
Figure 5: Colour-coded contour plot of the Grüneisen ratio divided by magnetic field, ΓH/H, of Pr2Ir2O7 inH–T phase space.


  1. 1

    Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Physica B 378–380, 23–27 (2006).

    Article  Google Scholar 

  2. 2

    Vojta, M. From itinerant to local-moment antiferromagnetism in Kondo lattices: Adiabatic continuity versus quantum phase transitions. Phys. Rev. B 78, 125109 (2008).

    Article  Google Scholar 

  3. 3

    Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted Y bRh2Si2 . Phys. Rev. Lett. 104, 186402 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Coleman, P., Pepin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Si, Q. & Paschen, S. Quantum phase transitions in heavy fermion metals and Kondo insulators. Phys. Status Solidi B 250, 425–438 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Nakatsuji, S. et al. Metallic spin-liquid behaviour of the geometrically frustrated Kondo lattice Pr2Ir2O7 . Phys. Rev. Lett. 96, 087204 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Ritz, R. et al. Formation of a topological non-Fermi liquid in MnSi. Nature 497, 231–234 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in ’spin ice’. Nature 399, 333–335 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Bramwell, S. T. et al. Spin correlations in Ho2Ti2O7: A dipolar spin ice system. Phys. Rev. Lett. 87, 047205 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Kimura, K. et al. Quantum fluctuations in spin-ice-like Pr2Zn2O7 . Nature Commun. 4, 1934 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Pomaranski, D. et al. Absence of Pauling’s residual entropy in thermally equilibrated Dy2Ti2O7 . Nature Phys. 9, 353–356 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Flint, R. & Senthil, T. Chiral RKKY interaction in Pr2Ir2O7 . Phys. Rev. B 87, 125147 (2013).

    Article  Google Scholar 

  17. 17

    Lee, S., Paramekanti, A. & Kim, Y. B. RKKY interactions and the anomalous Hall effect in metallic rare-earth pyrochlores. Phys. Rev. Lett. 111, 196601 (2013).

    Article  Google Scholar 

  18. 18

    Onoda, S. & Tanaka, Y. Quantum melting of spin ice: emergent cooperative quadrupole and chirality. Phys. Rev. Lett. 105, 047201 (2010).

    Article  Google Scholar 

  19. 19

    Zhu, L., Garst, M., Rosch, A. & Si, Q. Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91, 066404 (2003).

    Article  Google Scholar 

  20. 20

    Tokiwa, Y., Radu, T., Geibel, C., Steglich, F. & Gegenwart, P. Divergence of the magnetic Grüneisen ratio at the field-induced quantum critical point in Y bRh2Si2 . Phys. Rev. Lett. 102, 066401 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Gegenwart, P., Weickert, F., Garst, M., Perry, R. S. & Maeno, Y. Metamagnetic quantum criticality in Sr3Ru2O7 studied by thermal expansion. Phys. Rev. Lett. 96, 136402 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Schroeder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351– 355 (2000).

    Article  Google Scholar 

  23. 23

    Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524– 527 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Hiroi, Z., Matsuhira, K., Takagi, S., Tayama, T. & Sakakibara, T. Specific heat of kagomé ice in the pyrochlore oxide Dy2Ti2O7 . J. Phys. Soc. Jpn 72, 411–418 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Tokiwa, Y., Bauer, E. D. & Gegenwart, P. Zero-field quantum critical point in CeCoIn5 . Phys. Rev. Lett. 111, 107003 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Moon, E-G., Cenke, X., Kim, Y. B. & Balents, L. Non-Fermi-liquid and topological states with strong spin–orbit coupling. Phys. Rev. Lett. 111, 206401 (2013).

    Article  Google Scholar 

  27. 27

    Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Millican, J. N. et al. Crystal growth and structure of R2Ir2O7 (R = Pr, Eu) using molten KF. Mater. Res. Bull. 42, 928–934 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Tokiwa, Y. & Gegenwart, P. High-resolution alternating-field technique to determine the magnetocaloric effect of metals down to very low temperatures. Rev. Sci. Instrum. 82, 013905 (2011).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge discussions with L. Balents, M. Brando, J.G. Donath, M. Garst, Yong-Baek Kim, K. Kimura, Q. Si, C. Stingl, M. Vojta and K. Winzer. This work has been supported by the German Science Foundation through FOR 960 (Quantum phase transitions), the Helmholtz Virtual Institute VH521, and by Grants-in-Aid for Scientific Research (No. 25707030) from JSPS, and by PRESTO of JST. The use of the Materials Design and Characterization Laboratory at ISSP is gratefully acknowledged. This work was supported also in part by the National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics.

Author information




Y.T., S.N. and P.G. planned the project. Measurements and analysis of the specific heat and magnetocaloric effect were performed by Y.T. The samples were synthesized and characterized by J.J.I. and S.N. Y.T., S.N. and P.G. discussed the results and prepared the manuscript.

Corresponding authors

Correspondence to Y. Tokiwa or P. Gegenwart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tokiwa, Y., Ishikawa, J., Nakatsuji, S. et al. Quantum criticality in a metallic spin liquid. Nature Mater 13, 356–359 (2014). https://doi.org/10.1038/nmat3900

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing