Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Galvanotactic control of collective cell migration in epithelial monolayers

A Corrigendum to this article was published on 22 April 2014

This article has been updated

Abstract

Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galvanotactic chamber design.
Figure 2: Epithelial monolayers undergoing galvanotaxis perform collective U-turns and respond rapidly.
Figure 3: Epithelial monolayer migration follows field lines in 2D electric fields.
Figure 4: Monolayer size and shape affect galvanotactic controllability.
Figure 5: Leader cells are insensitive to galvanotaxis.
Figure 6: MDCK-II monolayers undergo galvanotaxis against co-cultured obstacles.

Similar content being viewed by others

Change history

  • 21 March 2014

    In the version of this Article originally published, in Figs 4a,e, 5b,c and 6a, the units for velocity should have read 'μm h–1'. This error has now been corrected in the online versions of the Article.

References

  1. Zitterbart, D. P., Wienecke, B., Butler, J. P. & Fabry, B. Coordinated movements prevent jamming in an Emperor penguin huddle. PLoS ONE 6, e20260 (2011).

    Article  CAS  Google Scholar 

  2. Cavagna, A. et al. Scale-free correlations in starling flocks. Proceedings 107, 11865–11870 (2010).

    CAS  Google Scholar 

  3. Gordon, D. M. The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498, 91–93 (2013).

    Article  CAS  Google Scholar 

  4. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  Google Scholar 

  5. Zheng, Z., Ahn, S., Chen, D. & Laval, J. Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform. Procedia 17, 702–716 (2011).

    Google Scholar 

  6. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  7. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  CAS  Google Scholar 

  8. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469–475 (2011).

    Article  CAS  Google Scholar 

  9. Kim, J. H. et al. Propulsion and navigation within the advancing monolayer sheet. Nature Mater. 12, 1–8 (2013).

    Article  Google Scholar 

  10. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    Article  CAS  Google Scholar 

  11. Ram, S. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).

    Article  Google Scholar 

  12. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).

    Article  CAS  Google Scholar 

  13. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nature Phys. 8, 628–634 (2012).

    Article  CAS  Google Scholar 

  14. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    CAS  Google Scholar 

  15. Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

    Article  CAS  Google Scholar 

  16. Sun, Y. et al. Self-organizing circuit assembly through spatiotemporally coordinated neuronal migration within geometric constraints. PLoS ONE 6, e28156 (2011).

    Article  CAS  Google Scholar 

  17. Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441–449 (2004).

    Article  CAS  Google Scholar 

  18. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  19. Vasilyev, A. et al. Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol. 7, e9 (2009).

    Article  Google Scholar 

  20. Bianco, A. et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 448, 362–365 (2007).

    Article  CAS  Google Scholar 

  21. Selmeczi, D. Phase transition in the collective migration of tissue cells: Experiment and model. Phys. Rev. E 74, 1–5 (2006).

    Google Scholar 

  22. Mccann, C. P., Kriebel, P. W., Parent, C. A. & Losert, W. Cell speed, persistence and information transmission during signal relay and collective migration. J. Chem. Sci. 123, 1724–1731 (2010).

    CAS  Google Scholar 

  23. Vitorino, P. & Meyer, T. Modular control of endothelial sheet migration. Genes Dev. 1, 3268–3281 (2008).

    Article  Google Scholar 

  24. McCaig, C. D., Song, B. & Rajnicek, A. M. Electrical dimensions in cell science. J. Cell Sci. 122, 4267–4276 (2009).

    Article  CAS  Google Scholar 

  25. Forrester, J. V, Lois, N., Zhao, M. & McCaig, C. The spark of life: the role of electric fields in regulating cell behaviour using the eye as a model system. Ophthal. Res. 39, 4–16 (2007).

    Article  Google Scholar 

  26. Zhao, M. Electrical fields in wound healing-an overriding signal that directs cell migration. Semin. Cell Dev. Biol. 20, 674–682 (2009).

    Article  CAS  Google Scholar 

  27. Caig, C. D. M. C., Rajnicek, A. N. N. M., Song, B. & Zhao, M. I. N. Controlling cell behavior electrically?: Current views and future potential. Phys. Rev. 943–978 (2005).

  28. Nagel, W. Ueber Galvanotaxis. Pflügers Arch. Bd 59, 603–642 (1895).

    Article  Google Scholar 

  29. Allen, G. M., Mogilner, A. & Theriot, J. A. Electrophoresis of cellular membrane components creates the directional cue guiding keratocyte galvanotaxis. Curr. Biol. 23, 560–569 (2013 ).

    Article  CAS  Google Scholar 

  30. Sun, Y. et al. Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field. Curr. Biol. 23, 569–574 (2013).

    Article  CAS  Google Scholar 

  31. Cooper, M. S. & Keller, R. E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl Acad. Sci. USA 81, 160–164 (1984).

    Article  CAS  Google Scholar 

  32. Reid, B., Nuccitelli, R. & Zhao, M. Non-invasive measurement of bioelectric currents with a vibrating probe. Nature Protoc. 2, 661–669 (2007).

    Article  CAS  Google Scholar 

  33. Yao, L., Pandit, A., Yao, S. & Mccaig, C. D. Electric field-guided neuron migration?: A novel approach in neurogenesis. Tissue Eng. B 17, 1–11 (2011).

    Article  Google Scholar 

  34. Hammerick, K. E., Longaker, M. T. & Prinz, F. B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 397, 12–17 (2010).

    Article  CAS  Google Scholar 

  35. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  Google Scholar 

  36. Robinson, K. R. The responses of cells to electrical fields: a review. J. Cell Biol. 101, 2023–2027 (1985).

    Article  CAS  Google Scholar 

  37. Erickson, C. A. & Nuccitelli, R. Can be influenced by physiological electric fields embryonic fibroblast motility and orientation. J. Cell Biol. 98, 296–307 (1984).

    Article  CAS  Google Scholar 

  38. Nishimura, K. Y., Isseroff, R. R. & Nuccitelli, R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 109 Pt 1, 199–207 (1996).

    Google Scholar 

  39. Song, B. et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nature Protoc. 2, 1479–1489 (2007).

    Article  CAS  Google Scholar 

  40. Li, L. et al. E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell. Mol. Life Sci. 69, 2779–2789 (2012).

    Article  CAS  Google Scholar 

  41. Huang, C-W., Cheng, J-Y., Yen, M-H. & Young, T-H. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens. Bioelectron. 24, 3510–3516 (2009).

    Article  CAS  Google Scholar 

  42. Tsai, H-F., Peng, S-W., Wu, C-Y., Chang, H-F. & Cheng, J-Y. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. Biomicrofluidics 6, 034116 (2012).

    Article  Google Scholar 

  43. Song, S., Han, H., Ko, U. H., Kim, J. & Shin, J. H. Collaborative effects of electric field and fluid shear stress on fibroblast migration. Lab Chip 13, 1602–1611 (2013).

    Article  CAS  Google Scholar 

  44. Doxzen, K. et al. Guidance of collective cell migration by substrate geometry. Integr. Biol. (Camb). 5, 1026–1035 (2013).

    Article  CAS  Google Scholar 

  45. Mark, S. et al. Physical model of the dynamic instability in an expanding cell culture. Biophys. J. 98, 361–370 (2010).

    Article  CAS  Google Scholar 

  46. Rolli, C. G. et al. Switchable adhesive substrates: revealing geometry dependence in collective cell behaviour. Biomaterials 33, 2409–2418 (2012).

    Article  CAS  Google Scholar 

  47. Abercrombie, M. Contact inhibition in tissue culture. In Vitro 6, 128–42 (1970).

    Article  CAS  Google Scholar 

  48. Puliafito, A. et al. Collective and single cell behaviour in epithelial contact inhibition. Proc. Natl Acad. Sci. USA 109, 739–744 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following for reagents and advice: N. Borghi (Institut Jacques Monod, Paris); K. Matlin (Univ. Chicago); D.J. Seo (UC Berkeley); M. Lowndes (Stanford University); C. Tropini (Stanford University); W. Marshall (UCSF); S. Prabhu (UCLA) and J. Bone (UC Berkeley). This work was supported by a Graduate Fellowship from the NSF to D.J.C., HFSP (RGP0040/2012) to W.J.N., and EFRI-1240380 to M.M.M.

Author information

Authors and Affiliations

Authors

Contributions

D.J.C. designed and built the device, designed and performed experiments, and analysed and interpreted data. W.J.N. interpreted biological data. M.M.M. contributed to the design of the device. All authors participated in writing the paper.

Corresponding author

Correspondence to Daniel J. Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 554 kb)

Supplementary Information

Supplementary Movie S1 (AVI 11790 kb)

Supplementary Information

Supplementary Movie S2 (AVI 8439 kb)

Supplementary Information

Supplementary Movie S3 (AVI 10896 kb)

Supplementary Information

Supplementary Movie S4 (AVI 9232 kb)

Supplementary Information

Supplementary Movie S5 (AVI 24871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, D., James Nelson, W. & Maharbiz, M. Galvanotactic control of collective cell migration in epithelial monolayers. Nature Mater 13, 409–417 (2014). https://doi.org/10.1038/nmat3891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing