Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant nanobionics approach to augment photosynthesis and biochemical sensing

A Corrigendum to this article was published on 22 April 2014

This article has been updated

Abstract

The interface between plant organelles and non-biological nanostructures has the potential to impart organelles with new and enhanced functions. Here, we show that single-walled carbon nanotubes (SWNTs) passively transport and irreversibly localize within the lipid envelope of extracted plant chloroplasts, promote over three times higher photosynthetic activity than that of controls, and enhance maximum electron transport rates. The SWNT–chloroplast assemblies also enable higher rates of leaf electron transport in vivo through a mechanism consistent with augmented photoabsorption. Concentrations of reactive oxygen species inside extracted chloroplasts are significantly suppressed by delivering poly(acrylic acid)–nanoceria or SWNT–nanoceria complexes. Moreover, we show that SWNTs enable near-infrared fluorescence monitoring of nitric oxide both ex vivo and in vivo, thus demonstrating that a plant can be augmented to function as a photonic chemical sensor. Nanobionics engineering of plant function may contribute to the development of biomimetic materials for light-harvesting and biochemical detection with regenerative properties and enhanced efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of SWNT trapping by chloroplast lipid bilayers.
Figure 2: The ss(AT)15–SWNT lipid exchange with the chloroplasts’ outer envelope via a passive uptake mechanism is dependent on zeta potential.
Figure 3: Nanoparticle transport inside isolated chloroplasts and leaves.
Figure 4: SWNT and nanoceria plant nanobionics.

Similar content being viewed by others

Change history

  • 21 March 2014

    In the version of this Article originally published, in Fig. 4k, the scale bar should have been 16 μm, and in the sentence beginning “Leaves assembled with CoMoCAT…” the characteristic fluorescence peak for the (6,5) chirality should have read ‘(980–1,000 nm)’. These errors have now been corrected in the online versions of the Article.

References

  1. Weise, S. E., Weber, A. P. M. & Sharkey, T. D. Maltose is the major form of carbon exported from the chloroplast at night. Planta 218, 474–482 (2004).

    Article  CAS  Google Scholar 

  2. Boghossian, A. A. et al. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 3, 881–893 (2013).

    Article  CAS  Google Scholar 

  3. Trench, R. K., Boyle, J. E. & Smith, D. C. The association between chloroplasts of Codium fragile and the mollusc Elysia viridis. I. characteristics of isolated Codium chloroplasts. Proc. R. Soc. B Biol. Sci. 184, 51–61 (1973).

    Article  CAS  Google Scholar 

  4. Rumpho, M. E., Summer, E. J. & Manhart, J. R. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 123, 29–38 (2000).

    Article  CAS  Google Scholar 

  5. Choe, H. & Thimann, K. The senescence of isolated chloroplasts. Planta 121, 201–203 (1974).

    Article  CAS  Google Scholar 

  6. Green, B. J., Fox, T. C. & Rumpho, M. E. Stability of isolated algal chloroplasts that participate in a unique mollusc/kleptoplast association. Symbiosis 40, 31–40 (2005).

    Google Scholar 

  7. Neuhaus, H. E. & Schulte, N. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochem. J. 318, 945–953 (1996).

    Article  CAS  Google Scholar 

  8. Edelman, M. & Mattoo, A. K. D1-protein dynamics in photosystem II: The lingering enigma. Photosynth. Res. 98, 609–620 (2008).

    Article  CAS  Google Scholar 

  9. Schmitz-Linneweber, C. et al. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol. Biol. 45, 307–315 (2001).

    Article  CAS  Google Scholar 

  10. Mar’in-Navarro, J., Manuell, A. L., Wu, J. P. & Mayfield, S. Chloroplast translation regulation. Photosynth. Res. 94, 359–374 (2007).

    Article  Google Scholar 

  11. Bolton, J. R. & Hall, D. Photochemical conversion and storage of solar energy. Annu. Rev. Energy 4, 353–401 (1979).

    Article  CAS  Google Scholar 

  12. Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    Article  CAS  Google Scholar 

  13. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  Google Scholar 

  14. Wilhelm, C. & Selmar, D. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. J. Plant Physiol. 168, 79–87 (2011).

    Article  CAS  Google Scholar 

  15. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  CAS  Google Scholar 

  16. Han, J.-H. et al. Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Mater. 9, 833–839 (2010).

    Article  CAS  Google Scholar 

  17. Zhang, J. et al. Single molecule detection of nitric oxide enabled by d(AT)(15) DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc. 20, 567–581 (2010).

    Google Scholar 

  18. Shi, X., von dem Bussche, A., Hurt, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nature Nanotech. 6, 714–719 (2011).

    Article  CAS  Google Scholar 

  19. Pogodin, S., Slater, N. K. H. & Baulin, V. a. Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer. ACS Nano 5, 1141–1146 (2011).

    Article  CAS  Google Scholar 

  20. Chen, J., Patil, S., Seal, S. & McGinnis, J. F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nature Nanotech. 1, 142–150 (2006).

    Article  CAS  Google Scholar 

  21. Soll, J. & Schleiff, E. Protein import into chloroplasts. Nature Rev. Mol. Cell Biol. 5, 198–208 (2004).

    Article  CAS  Google Scholar 

  22. Pogodin, S. & Baulin, V. a. Can a carbon nanotube pierce through a phospholipid bilayer?. ACS Nano 4, 5293–5300 (2010).

    Article  CAS  Google Scholar 

  23. Leheny, E. A. & Theg, S. M. Apparent inhibition of chloroplast protein import by cold temperatures is due to energetic considerations not membrane fluidity. Plant Cell 6, 427–437 (1994).

    Article  CAS  Google Scholar 

  24. Ma, X. et al. Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function. ACS Nano 6, 10486–10496 (2012).

    Article  CAS  Google Scholar 

  25. Block, M. a, Douce, R., Joyard, J. & Rolland, N. Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth. Res. 92, 225–244 (2007).

    Article  CAS  Google Scholar 

  26. Liu, Q. L. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).

    Article  CAS  Google Scholar 

  27. Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).

    Article  CAS  Google Scholar 

  28. Deshpande, S., Patil, S., Kuchibhatla, S. V. & Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005).

    Article  Google Scholar 

  29. Sicard, C. et al. CeO2 nanoparticles for the protection of photosynthetic organisms immobilized in silica gels. Chem. Mater. 23, 1374–1378 (2011).

    Article  CAS  Google Scholar 

  30. Asati, A., Santra, S., Kaittanis, C. & Perez, J. M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4, 5321–5331 (2010).

    Article  CAS  Google Scholar 

  31. Lonergan, T. A. & Sargent, M. L. Regulation of the photosynthesis rhythm in Euglena gracilis CS1-75. Plant Physiol. 64, 99–103 (1979).

    Article  CAS  Google Scholar 

  32. Ham, M-H. et al. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nature Chem. 2, 929–936 (2010).

    Article  CAS  Google Scholar 

  33. Boghossian, A. A., Ham, M.-H., Choi, J. H. & Strano, M. S. Biomimetic strategies for solar energy conversion: a technical perspective. Energy Environ. Sci. 4, 3834–3843 (2011).

    Article  CAS  Google Scholar 

  34. Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 6, 1891–1900 (2013).

    Article  CAS  Google Scholar 

  35. Mubarakshina, M. M. et al. Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 61, 3577–3587 (2010).

    Article  CAS  Google Scholar 

  36. Kim, J-H. et al. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nature Chem. 1, 473–481 (2009).

    Article  CAS  Google Scholar 

  37. Wilson, I. D., Neill, S. J. & Hancock, J. T. Nitric oxide synthesis and signalling in plants. Plant. Cell Environ. 31, 622–631 (2008).

    Article  CAS  Google Scholar 

  38. Tvrdy, K. et al. A kinetic model for the deterministic prediction of gel-based carbon nanotube separation. ACS Nano 7, 1779–1789 (2013).

    Article  CAS  Google Scholar 

  39. Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotech. 4, 114–120 (2009).

    Article  CAS  Google Scholar 

  40. Lilley, R. M., Fitzgerald, M. P., Rienits, K. G. & Walker, D. A. Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol. 75, 1–10 (1975).

    Article  CAS  Google Scholar 

  41. Arnon, D. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–16 (1949).

    Article  CAS  Google Scholar 

  42. Huang, X. et al. Magnetic virus-like nanoparticles in N benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5, 4037–4045 (2011).

    Article  CAS  Google Scholar 

  43. Jiang, M. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53, 2401–2410 (2002).

    Article  CAS  Google Scholar 

  44. Able, A., Guest, D. & Sutherland, M. Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. Plant Physiol. 117, 491–499 (1998).

    Article  CAS  Google Scholar 

  45. Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the U.S. Department of Energy under grant number DE-FG02-08ER46488 (M.S.S., S.M.F., A.A.B., T.P.M., A.H.J.). This material is based on work supported by the National Science Foundation Postdoctoral Research Fellowship in Biology under Grant No. 1103600 (J.P.G.). The co-authors were also supported by the NSF PRFB Fellowship under Award No. 1306229 (M.P.L), NSF GRFP (N.F.R.), and DPU-ILTEM and TUBITAK (F.S). We also thank S. Blake, J. Zhang and Darmouth Senior B. Gibbons for assistance. W. Salmon and N. Watson (Whitehead M. Keck Microscopy facility) helped with training and technical advice on confocal and TEM microscopy.

Author information

Authors and Affiliations

Authors

Contributions

J.P.G. and M.S.S. conceived experiments and wrote the paper. J.P.G., M.P.L., S.M.F., T.P.M. and N.M.I. performed experiments and data analysis. A.A.B., F.S., A.J.H., N.F.R. and J.A.B. assisted in experiments and analysis.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2778 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1693 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldo, J., Landry, M., Faltermeier, S. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Mater 13, 400–408 (2014). https://doi.org/10.1038/nmat3890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3890

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research