Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient

Abstract

The sensitive response of the nematic graphene oxide (GO) phase to external stimuli makes this phase attractive for extending the applicability of GO and reduced GO to solution processes and electro-optic devices. However, contrary to expectations, the alignment of nematic GO has been difficult to control through the application of electric fields or surface treatments. Here, we show that when interflake interactions are sufficiently weak, both the degree of microscopic ordering and the direction of macroscopic alignment of GO liquid crystals (LCs) can be readily controlled by applying low electric fields. We also show that the large polarizability anisotropy of GO and Onsager excluded-volume effect cooperatively give rise to Kerr coefficients that are about three orders of magnitude larger than the maximum value obtained so far in molecular LCs. The extremely large Kerr coefficient allowed us to fabricate electro-optic devices with macroscopic electrodes, as well as well-aligned, defect-free GO over wide areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase sequence, nematic volume-fraction diagram and flow-induced birefringence.
Figure 2: Electric-field-induced birefringence.
Figure 3: Extremely large Kerr coefficient and the mechanisms involved.
Figure 4: Electro-optic GO-LC device using simple macroscopic wire electrodes.
Figure 5: Director switching of induced GO-LC alignment and field-induced wide-area uniform nematic GO-LC phase.

Similar content being viewed by others

References

  1. Zakri, C. et al. Liquid crystals of carbon nanotubes and graphene. Phil. Trans. R. Soc. A 371, 20120499 (2013).

    Article  Google Scholar 

  2. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  3. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  4. Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem. 2, 1015–1024 (2010).

    Article  CAS  Google Scholar 

  5. Behabtu, N. et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotech. 5, 406–411 (2010).

    Article  CAS  Google Scholar 

  6. Williams, G., Seger, B. & Kamat, P. V. TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008).

    Article  CAS  Google Scholar 

  7. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    Article  CAS  Google Scholar 

  8. Demus, D., Goodby, J. W., Gray, G. W. & Spiess, H-W. Handbook of Liquid Crystals Vol 1 (Wiley-VCH, (1998).

    Book  Google Scholar 

  9. Hisakado, Y., Kikuchi, H., Nagamura, T. & Kajiyama, T. Large electro-optic Kerr effect in polymer stabilised liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005).

    Article  CAS  Google Scholar 

  10. Kim, J. E. et al. Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011).

    Article  CAS  Google Scholar 

  11. Dan, B. et al. Liquid crystals of aqueous, giant graphene oxide flakes. Soft. Matter. 7, 11154–11159 (2011).

    Article  CAS  Google Scholar 

  12. Dierking, I., Scalia, G. & Morales, P. Liquid crystal–carbon nanotube dispersions. J. Appl. Phys 97, 044309 (2005).

    Article  Google Scholar 

  13. Dierking, I., Scalia, G., Morales, P. & LeClere, D. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv. Mater. 16, 865–869 (2004).

    Article  CAS  Google Scholar 

  14. Tie, W. et al. Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals. Opt. Express 21, 19867–19879 (2013).

    Article  Google Scholar 

  15. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  16. Bates, M. A. & Frenkel, D. Nematic–isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys. 110, 6553–6559 (1999).

    Article  CAS  Google Scholar 

  17. Zhang, S. & Kumar, S. Carbon nanotubes as liquid crystals. Small 4, 1270–1283 (2008).

    Article  CAS  Google Scholar 

  18. Xu, Z. & Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011).

    Article  CAS  Google Scholar 

  19. Davis, V. A. et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).

    Article  CAS  Google Scholar 

  20. Hummers, W. S. & Offema, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  21. Hontoria-Lucas, C., Lopez-Peinado, A. J., Lopez-Gonzalez, J. de D., Rojas-Cervantes, M. L. & Martin-Aranda, R. M. Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995).

    Article  CAS  Google Scholar 

  22. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B. & Kim, J-K. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv. Funct. Mater. 21, 2978–2988 (2011).

    Article  CAS  Google Scholar 

  23. Chen, K-M., Gauza, S., Xianyu, H. & Wu, S-T. Hysteresis effects in blue-phase liquid crystals. J. Disp. Technol. 6, 318–322 (2010).

    Article  Google Scholar 

  24. Rao, L. et al. Critical field for a hysteresis-free BPLC device. J. Disp. Technol. 7, 627–629 (2011).

    Article  Google Scholar 

  25. Jimenez, M. L., Fornasari, L., Mantegazza, F., Mourad, M. C. & Bellini, T. Electric birefringence of dispersions of platelets. Langmuir 28, 251–258 (2012).

    Article  CAS  Google Scholar 

  26. Mohapatra, A. K., Bason, M. G., Butscher, B., Weatherill, K. J. & Adams, C. S. A giant electro-optic effect using polarizable dark states. Nature Phys. 4, 890–894 (2008).

    Article  CAS  Google Scholar 

  27. Haseba, Y., Kikuchi, H., Nagamura, T. & Kajiyama, T. Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range. Adv. Mater. 17, 2311–2315 (2005).

    Article  CAS  Google Scholar 

  28. Chen, Y., Xu, D., Wu, S-T., Yamamoto, S-I. & Haseba, Y. A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 102, 141116 (2013).

    Article  Google Scholar 

  29. Dimiev, A. M., Alemany, L. B. & Tour, J. M. Graphene oxide origin of acidity, its instability in water and a new dynamic structural model. ACS Nano. 7, 576–588 (2013).

    Article  CAS  Google Scholar 

  30. O’Konski, C. T. Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605–619 (1960).

    Article  Google Scholar 

  31. Dozov, I. et al. Electric-field-induced perfect anti-nematic order in isotropic aqueous suspensions of a natural beidellite clay. J. Phys. Chem. B 115, 7751–7765 (2011).

    Article  CAS  Google Scholar 

  32. Straley, J. P. The gas of long rods as a model for lyotropic liquid crystals. Mol. Cryst. Liq. Cryst. 22, 333–357 (1973).

    Article  CAS  Google Scholar 

  33. Van der Beek, D. et al. Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets. Phys. Rev. E 73, 041402 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2012R1A1A1012167 and No. 2013R1A1A2057455).

Author information

Authors and Affiliations

Authors

Contributions

J-K.S. planned and supervised the project. T-Z.S. and S-H.H. carried out all the experiments. All authors analysed the data and participated in writing the manuscript.

Corresponding author

Correspondence to Jang-Kun Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2253 kb)

Supplementary Information

Supplementary Movie S1 (MP4 2546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, TZ., Hong, SH. & Song, JK. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nature Mater 13, 394–399 (2014). https://doi.org/10.1038/nmat3888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing