Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear interactions in an organic polariton condensate

Abstract

Under the right conditions, cavity polaritons form a macroscopic condensate in the ground state. The fascinating nonlinear behaviour of this condensate is largely dictated by the strength of polariton–polariton interactions. In inorganic semiconductors, these result principally from the Coulomb interaction between Wannier–Mott excitons. Such interactions are considerably weaker for the tightly bound Frenkel excitons characteristic of organic semiconductors and were notably absent in the first reported demonstration of organic polariton lasing. In this work, we demonstrate the realization of an organic polariton condensate, at room temperature, in a microcavity containing a thin film of 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene. On reaching threshold, we observe the spontaneous formation of a linearly polarized condensate, which exhibits a superlinear power dependence, long-range order and a power-dependent blueshift: a clear signature of Frenkel polariton interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Materials and experimental structure.
Figure 2: Angle-resolved reflectivity.
Figure 3: Angle-resolved photoluminescence.
Figure 4: Pump fluence and polarization dependence.
Figure 5: Temporally resolved polariton emission.
Figure 6: Spatial coherence.

Similar content being viewed by others

References

  1. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  2. Kavokin, A. Microcavities (Oxford Univ. Press, (2007).

    Book  Google Scholar 

  3. Savona, V., Tassone, F., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures. Phys. Rev. B 53, 13051–13062 (1996).

    Article  CAS  Google Scholar 

  4. Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).

    Article  CAS  Google Scholar 

  5. Christmann, G. et al. Polariton ring condensates and sunflower ripples in an expanding quantum liquid. Phys. Rev. B 85, 235303 (2012).

    Article  Google Scholar 

  6. Sanvitto, D. et al. All-optical control of the quantum flow of a polariton condensate. Nature Photon. 5, 610–614 (2011).

    Article  CAS  Google Scholar 

  7. Roumpos, G. et al. Single vortex-antivortex pair in an exciton-polariton condensate. Nature Phys. 7, 129–133 (2011).

    Article  CAS  Google Scholar 

  8. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  CAS  Google Scholar 

  9. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  10. Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  CAS  Google Scholar 

  11. Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004).

    Article  Google Scholar 

  12. Dang, L.S., Heger, D., André, R., Boeuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998).

    Article  CAS  Google Scholar 

  13. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    Article  CAS  Google Scholar 

  14. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  15. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  CAS  Google Scholar 

  16. Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article  Google Scholar 

  17. Lu, T-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20, 5530–5537 (2012).

    Article  CAS  Google Scholar 

  18. Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013).

    Article  Google Scholar 

  19. Daskalakis, K. S. et al. All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Appl. Phys. Lett. 102, 101113–101113 (2013).

    Article  Google Scholar 

  20. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  CAS  Google Scholar 

  21. Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).

    Article  CAS  Google Scholar 

  22. Kéna-Cohen, S., Davanço, M. & Forrest, S. R. Strong exciton–photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008).

    Article  Google Scholar 

  23. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  Google Scholar 

  24. Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998).

    Article  CAS  Google Scholar 

  25. Mazza, L., Kéna-Cohen, S., Michetti, P. & La Rocca, G. C. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013).

    Article  Google Scholar 

  26. Mazza, L., Fontanesi, L. & La Rocca, G. C. Organic-based microcavities with vibronic progressions: Photoluminescence. Phys. Rev. B 80, 235314 (2009).

    Article  Google Scholar 

  27. Slootsky, M., Zhang, Y. & Forrest, S. R. Temperature dependence of polariton lasing in a crystalline anthracene microcavity. Phys. Rev. B 86, 045312 (2012).

    Article  Google Scholar 

  28. Utsunomiya, S. et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Phys. 4, 700–705 (2008).

    Article  CAS  Google Scholar 

  29. Litinskaya, M. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77, 155325 (2008).

    Article  Google Scholar 

  30. Bittner, E. R. & Silva, C. Estimating the conditions for polariton condensation in organic thin-film microcavities. J. Chem. Phys. 136, 034510 (2012).

    Article  Google Scholar 

  31. Zoubi, H. & La Rocca, G. C. Exciton–polariton kinematic interactions in organic microcavities. Phys. Rev. B 72, 125306 (2005).

    Article  Google Scholar 

  32. Agranovich, V. M., Litinskaia, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 085311 (2003).

    Article  Google Scholar 

  33. Michetti, P. & La Rocca, G. C. Polariton states in disordered organic microcavities. Phys. Rev. B 71, 115320 (2005).

    Article  Google Scholar 

  34. Wouters, M., Liew, T. C. H. & Savona, V. Energy relaxation in one-dimensional polariton condensates. Phys. Rev. B 82, 245315 (2010).

    Article  Google Scholar 

  35. Kéna-Cohen, S., Maier, S. A. & Bradley, D. D. C. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013).

    Article  Google Scholar 

  36. Lin, H-W. et al. Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry. J. Appl. Phys. 95, 881–886 (2004).

    Article  CAS  Google Scholar 

  37. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  38. Porras, D & Tejedor, C. Linewidth of a polariton laser: Theoretical analysis of self-interaction effects. Phys. Rev. B 67, 161310 (2003).

    Article  Google Scholar 

  39. Litinskaya, M., Reineker, P. & Agranovich, V. M. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004).

    Article  CAS  Google Scholar 

  40. Toffanin, S. et al. Molecular host–guest energy-transfer system with an ultralow amplified spontaneous emission threshold employing an ambipolar semiconducting host matrix. J. Phys. Chem. B 114, 120–127 (2009).

    Article  Google Scholar 

  41. Deng, H., Solomon, G. S., Hey, R., Ploog, K. H. & Yamamoto, Y. Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007).

    Article  Google Scholar 

  42. Wouters, M., Carusotto, I. & Ciuti, C. Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 115340 (2008).

    Article  Google Scholar 

  43. Snoke, D. Exciton Polaritons in Microcavities 307–327 (Springer, (2012).

    Book  Google Scholar 

  44. Wu, C. C., Lin, Y. T., Wong, K. T., Chen, R. T. & Chien, Y. Y. Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties. Adv. Mater. 16, 61–65 (2004).

    Article  CAS  Google Scholar 

  45. Panzarini, G. et al. Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities. Phys. Solid State 41, 1223–1238 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.K-C. and S.A.M. acknowledge financial support from the UK Engineering and Physical Sciences Research Council through the Active Plasmonics programme grant (EP/H000917/1). K.S.D. and R.M. acknowledge support from the European ITN project Icarus (237900). S.A.M. and K.S.D. gratefully acknowledge partial support from a Leverhulme Trust Embedding of Emerging Disciplines grant. The authors would like to thank L. Mazza for a critical reading of the manuscript and I. Carusotto for helpful comments regarding ref. 16. S.K-C. thanks Imperial College London for the award of a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.S.D. fabricated and characterized the TDAF microcavities. S.K-C. conceived the project, designed the structures and guided the experiments. K.S.D. and S.K-C. co-wrote the manuscript, and S.A.M. and R.M. contributed to the draft. All authors contributed to analysis of the data.

Corresponding author

Correspondence to S. Kéna-Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daskalakis, K., Maier, S., Murray, R. et al. Nonlinear interactions in an organic polariton condensate. Nature Mater 13, 271–278 (2014). https://doi.org/10.1038/nmat3874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing