Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electric-field control of magnetic order above room temperature


Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and off robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field effects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural and magnetic properties of FeRh/BaTiO3.
Figure 2: Influence of an applied voltage on the temperature dependence of the magnetization in FeRh/BaTiO3.
Figure 3: Voltage dependence of the magnetization and the structural parameters.
Figure 4: Influence of strain on the stability of AFM and FM states.
Figure 5: Influence of charge injection on the magnetic order.


  1. 1

    Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Weiler, M. et al. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 11, 013021 (2009).

    Article  Google Scholar 

  3. 3

    Lahtinen, T. H. E., Franke, K. J. A. & van Dijken, S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012).

    Article  Google Scholar 

  4. 4

    Ghidini, M. et al. Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nature Commun. 4, 1421–1427 (2013).

    Article  Google Scholar 

  5. 5

    Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nature Mater. 11, 289–293 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater. 10, 853–856 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Zakharov, A. I., Kadomtseva, A. M., Levitin, R. Z. & Ponyatovskii, E. G. Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy. Sov. Phys. JETP 19, 1348–1353 (1964).

    Google Scholar 

  10. 10

    Stamm, C. et al. Antiferromagnetic-ferromagnetic phase transition in FeRh probed by x-ray magnetic circular dichroism. Phys. Rev. B 77, 184401 (2008).

    Article  Google Scholar 

  11. 11

    Heeger, A. J. Pressure dependence of the FeRh first-order phase transition. J. Appl. Phys. 41, 4751–4752 (1970).

    CAS  Article  Google Scholar 

  12. 12

    De Vries, M. A. et al. Hall-effect characterization of the metamagnetic transition in FeRh. New J. Phys. 15, 013008 (2013).

    Article  Google Scholar 

  13. 13

    Gray, A. et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. Phys. Rev. Lett. 108, 257208 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Vaz, C. A. F. Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter 24, 333201 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Naito, T., Suzuki, I., Itoh, M. & Taniyama, T. Effect of spin polarized current on magnetic phase transition of ordered FeRh wires. J. Appl. Phys. 109, 07C911 (2011).

    Article  Google Scholar 

  16. 16

    Cher, K. M., Zhou, T. J. & Chen, J. S. Compositional effects on the structure and phase transition of epitaxial FeRh thin films. IEEE Trans. Magn. 47, 4033–4036 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Kay, H. F. & Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Phil. Mag. 40, 1019–1040 (1949).

    CAS  Article  Google Scholar 

  18. 18

    Fan, R. et al. Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers. Phys. Rev. B 82, 184418 (2010).

    Article  Google Scholar 

  19. 19

    Maat, S., Thiele, J-U. & Fullerton, E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).

    Article  Google Scholar 

  20. 20

    Rado, G., Ferrari, J. & Maisch, W. Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4 . Phys. Rev. B 29, 4041–4048 (1984).

    CAS  Article  Google Scholar 

  21. 21

    Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Hu, J-M., Nan, C-W. & Chen, L-Q. Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: Interface-charge and strain comediated magnetoelectric coupling. Phys. Rev. B 83, 134408 (2011).

    Article  Google Scholar 

  24. 24

    Baldasseroni, C. et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).

    Article  Google Scholar 

  25. 25

    Ovchinnikov, I. & Wang, K. Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys. Rev. B 79, 020402(R) (2009).

    Article  Google Scholar 

  26. 26

    Abo, G. S. et al. Definition of magnetic exchange length. IEEE Trans. Magn. 49, 4937–4939 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Sandratskii, L. M. & Mavropoulos, P. Magnetic excitations and femtomagnetism of FeRh: A first-principles study. Phys. Rev. B 83, 174408 (2011).

    Article  Google Scholar 

  28. 28

    Meyerheim, H. et al. Structural secrets of multiferroic interfaces. Phys. Rev. Lett. 106, 2–5 (2011).

    Article  Google Scholar 

  29. 29

    Park, S-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Wayne, R. Pressure dependence of the magnetic transitions in Fe–Rh alloys. Phys. Rev. 170, 523–527 (1968).

    CAS  Article  Google Scholar 

  31. 31

    Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Thiele, J-U., Maat, S. & Fullerton, E. E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl. Phys. Lett. 82, 2859–2861 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011).

    Article  Google Scholar 

  34. 34

    Rayson, M. J. & Briddon, P. R. Rapid iterative method for electronic-structure eigenproblems using localised basis functions. Comput. Phys. Commun. 178, 128–134 (2008).

    CAS  Article  Google Scholar 

Download references


We are very grateful to A. Gloter and S. Van Dijken for fruitful discussions and R. Mattana, C. Carrétéro, E. Lesne and R. Weil for technical assistance with SQUID measurements, sample growth and high-temperature MOKE. This work received financial support from the French Agence Nationale de la Recherche through project NOMILOPS (ANR-11-BS10-0016) and the European Research Council Advanced Grant FEMMES (contract no. 267579). R.O.C. acknowledges financial support by Thales through a CIFRE PhD grant.

Author information




M.B. and A.B. initiated the study. A.B. and R.O.C. conceived the experiments. R.O.C. prepared the samples and performed RHEED with the assistance of E.J. L.C.P., I.C.I., B.D., N.G., R.O.C. and M.B. carried out the X-ray diffraction experiments. V.G., S.F. and R.O.C. measured the ferroelectric response of the samples. R.O.C. characterized the samples by SQUID magnetometry, A.M. by MOKE and L.C.P., A.A.Ü., S.V. and F.K. by X-PEEM. V.I. and A.Z. performed the first-principles calculations using the code developed by P.R.B. M.B. wrote the manuscript with inputs from V.I. and A.Z. All authors contributed to the manuscript and the interpretation of the data.

Corresponding authors

Correspondence to V. Ivanovskaya or M. Bibes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cherifi, R., Ivanovskaya, V., Phillips, L. et al. Electric-field control of magnetic order above room temperature. Nature Mater 13, 345–351 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing