Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Couples of colloidal semiconductor nanorods formed by self-limited assembly

Abstract

Colloidal nanocrystal synthesis provides a powerful approach for creating unique nanostructures of relevance for applications. Here, we report that wurtzite ZnSe nanorod couples connected by twinning structures can be synthesized by means of a self-limited assembly process. Unlike for individual nanorods, the band-edge states calculated for the nanorod couples are predominantly confined to the short edges of the structure and this leads to low photoluminescence polarization anisotropy, as confirmed by single-particle fluorescence. Through a cation-exchange approach, the composition of nanorod couples can be readily expanded to additional materials, such as CdSe and PbSe. We anticipate that this family of nanorod-couple structures with distinct compositions and controlled properties will constitute an ideal system for the investigation of electronic coupling effects between individual nanorod components on the nanoscale, with relevance to applications in optics, photocatalysis and optoelectronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electron microscopy images of ZnSe nanorod couples.
Figure 2: Structural characterization of ZnSe nanorod couples.
Figure 3: Mechanistic study of the formation of ZnSe nanorod couples.
Figure 4: Level structure and optical properties of nanorod couples compared with nanorods.
Figure 5: Control of the features of nanorod couples.

References

  1. 1

    Lehn, J. M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Wang, T. et al. Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Banin, U. & Sitt, A. Superparticles get complex. Nature Mater. 11, 1009–1011 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Rubinstein, I., Steinberg, S., Tor, Y., Shanzer, A. & Sagiv, J. Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature 332, 426–429 (1988).

    CAS  Article  Google Scholar 

  5. 5

    Fan, H. et al. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304, 567–571 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Mater. 10, 872–876 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotech. 6, 580–587 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Pradhan, N., Xu, H. & Peng, X. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 6, 720–724 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Cho, K. S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: From nanodods to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Yu, J. H. et al. Synthesis of quantum-sized cubic ZnSe nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Koh, W. K., Bartnik, A. C., Wise, F. W. & Murray, C. B. Synthesis of monodisperse PbSe nanorods: A case for oriented attachment. J. Am. Chem. Soc. 132, 3909–3913 (2010).

    CAS  Article  Google Scholar 

  14. 14

    O’Sullivan, C. et al. Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J. Am. Chem. Soc. 131, 12250–12257 (2009).

    Article  Google Scholar 

  15. 15

    Kong, X. Y., Ding, Y., Yang, R. & Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348–1351 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater. 10, 936–941 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. & Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Ma, W. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3, 1934 (2013).

    Article  Google Scholar 

  23. 23

    Gibaud, T. et al. Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348–351 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Evers, W. H. et al. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 13, 2317–2323 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    CAS  Article  Google Scholar 

  26. 26

    LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    CAS  Article  Google Scholar 

  27. 27

    Baker, J. L., Widmer-Cooper, A., Toney, M. F., Geissler, P. L. & Alivisatos, A. P. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 10, 195–201 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Titov, A. V. & Kral, P. Modeling the self-assembly of colloidal nanorod superlattices. Nano Lett. 8, 3605–3612 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Wang, Z. et al. Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands. Proc. Natl Acad. Sci. USA 107, 17119–17124 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Hadar, I., Hitin, G. B., Sitt, A., Faust, A. & Banin, U. Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble. J. Phys. Chem. Lett. 4, 502–507 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Luther, J. M., Zheng, H., Sadtler, B. & Alivisatos, A. P. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 131, 16851–16857 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Li, H. et al. Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Lett. 11, 4964–4970 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Du, H. et al. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321–1324 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Talapin, D. V. et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rods and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Sitt, A., Salant, A., Menagen, G. & Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 11, 2054–2060 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. (246841). U.B. thanks the Alfred and Erica Larisch Memorial Chair. G.J. thanks the NSFC (11004177) for travel support. A.S. thanks the Fulbright foundation for their support.

Author information

Affiliations

Authors

Contributions

G.J. and U.B. designed the experiments and wrote the manuscript. G.J. carried out the experiments, materials characterization and analysis. A.S. carried out the electronic structure calculations. I.H. and G.B.H. carried out single-particle photoluminescence polarization and AFM measurements. Y.B. performed the calculation of interactions between two nanorods. Y.A. carried out SEM measurements. I.P. assisted with HRTEM measurements and structural analysis. All authors discussed the data and the mechanisms, and commented on the manuscript.

Corresponding authors

Correspondence to Amit Sitt or Uri Banin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2628 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jia, G., Sitt, A., Hitin, G. et al. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nature Mater 13, 301–307 (2014). https://doi.org/10.1038/nmat3867

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing