Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered materials for all-optical helicity-dependent magnetic switching

Abstract

The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth–transition metal (RE–TM) alloy films but also in a much broader variety of materials, including RE–TM alloys, multilayers and heterostructures. We further show that RE-free Co–Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE–TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the four types of ferromagnetic sample that have been studied and exhibit AO-HDS.
Figure 2: Examples of the two optical responses for two different samples.
Figure 3: Response to optical excitation for RE–TM alloys (GdxFeCo1−x, TbxCo1−x, DyxCo1−x, HoxFeCo1−x) and two types of RE–TM multilayer ([Tb/Co] and [Ho/CoFe]) as a function of the RE concentration (x).
Figure 4: Samples swept with circularly polarized beams (σ+ or σ ).
Figure 5: Magnetic measurements of a Ta(4 nm)/Pd(3 nm)/[Co(1 nm)/Ir/Co(0.4 nm)/Ni(0.6 nm)/Pt(0.3 nm)/Co(0.4 nm)/Ir]5/Pd(3 nm) SFI structure.

Similar content being viewed by others

References

  1. Katine, J., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  CAS  Google Scholar 

  2. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  3. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  CAS  Google Scholar 

  4. Alebrand, S. et al. Light-induced magnetization reversal of high-anisotropy TbCo alloy films. Appl. Phys. Lett. 101, 162408 (2012).

    Article  Google Scholar 

  5. Kirilyuk, A., Kimel, A. V. & Rasing, T. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys. Rep. Prog. Phys. 76, 026501 (2013).

    Article  Google Scholar 

  6. Tudosa, I. et al. The ultimate speed of magnetic switching in granular recording media. Nature 428, 831–833 (2004).

    Article  CAS  Google Scholar 

  7. Bedau, D. et al. Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy. Appl. Phys. Lett. 96, 022514 (2010).

    Article  Google Scholar 

  8. Savoini, M. et al. Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorption of light. Phys. Rev. B 86, 140404(R) (2012).

    Article  Google Scholar 

  9. Hassdenteufel, A. et al. Thermally assisted all-optical helicity dependent magnetic switching in amorphous Fe100−xTbx alloy films. Adv. Mater. 25, 3122–3128 (2013).

    Article  CAS  Google Scholar 

  10. Lambert, C. H. et al. Quantifying perpendicular magnetic anisotropy at the Fe–MgO(001) interface. Appl. Phys. Lett. 102, 122410 (2013).

    Article  Google Scholar 

  11. Zeper, W. B., Greidanus, F. J. A. M., Carcia, P. F. & Fincher, C. R. Perpendicular magnetic anisotropy and magneto-optical Kerr effect of vapor-deposited Co/Pt-layered structures. J. Appl. Phys. 65, 4971–4975 (1989).

    Article  CAS  Google Scholar 

  12. Girod, S. et al. Strong perpendicular magnetic anisotropy in Ni/Co(111) single crystal superlattices. Appl Phys. Lett. 94, 262504 (2009).

    Article  Google Scholar 

  13. Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater. 5, 210–215 (2006).

    Article  CAS  Google Scholar 

  14. Hansen, P., Clausen, C., Much, G., Rosenkranz, M. & Witter, K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756–767 (1989).

    Article  CAS  Google Scholar 

  15. Hansen, P., Klahn, S., Clausen, C., Much, G. & Witter, K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Dy, Ho, Fe, Co. J. Appl. Phys. 69, 3194–3207 (1991).

    Article  CAS  Google Scholar 

  16. Steil, D., Alebrand, S., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. All-optical magnetization recording by tailoring optical excitation parameters. Phys. Rev. B 84, 224408 (2011).

    Article  Google Scholar 

  17. Vahaplar, K. et al. All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling. Phys. Rev. B 85, 104402 (2012).

    Article  Google Scholar 

  18. Alebrand, S., Steil, D., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. Interplay of heating and helicity in all-optical magnetization switching. Phys. Rev. B 85, 092401 (2012).

    Article  Google Scholar 

  19. Khorsand, A. R. et al. Element-specific probing of ultrafast spin dynamics in multisublattice magnets with visible light. Phys. Rev. Lett. 110, 107205 (2013).

    Article  CAS  Google Scholar 

  20. Medapalli, R. et al. The role of magnetization compensation point for efficient ultrafast control of magnetization in Gd24Fe66.5Co9.5 alloy. Eur. Phys. J. B 86, 183 (2013).

    Article  Google Scholar 

  21. Mathias, S. et al. Probing the timescale of the exchange interaction in a ferromagnetic alloy. Proc. Natl Acad. Sci. USA 109, 4792–4797 (2012).

    Article  CAS  Google Scholar 

  22. Rudolf, D. et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nature Commun. 3, 1037 (2012).

    Article  Google Scholar 

  23. Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    Article  CAS  Google Scholar 

  24. Graves, C. E. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nature Mater. 12, 293–298 (2013).

    Article  CAS  Google Scholar 

  25. Turgut, E. et al. Controlling the competition between optically induced ultrafast spin-flip scattering and spin transport in magnetic multilayers. Phys. Rev. Lett. 110, 197201 (2013).

    Article  Google Scholar 

  26. Den Broeder, F. J. A., Hoving, W. & Bloemen, P. J. H. Magnetic anisotropy of multilayers. J. Magn. Magn. Mater. 93, 562–570 (1991).

    Article  CAS  Google Scholar 

  27. Itoh, H., Yanagihara, H., Suzuki, K. & Kita, E. Coexistence of the uniaxial anisotropy and the antiferromagnetic coupling in Co/Ir(111) superlattices. J. Magn. Magn. Mater. 257, 184–189 (2003).

    Article  CAS  Google Scholar 

  28. Stipe, B. C. et al. Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nature Photon. 4, 484–488 (2010).

    Article  CAS  Google Scholar 

  29. Kirilyuk, A., Kimel, A. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  Google Scholar 

  30. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Commun. 3, 666 (2012).

    Article  CAS  Google Scholar 

  31. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater. 9, 259–265 (2009).

    Article  Google Scholar 

  32. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    Article  CAS  Google Scholar 

  33. Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    Article  CAS  Google Scholar 

  34. Schellekens, A. J. & Koopmans, B. Microscopic model for ultrafast magnetization dynamics of multisublattice magnets. Phys. Rev. B 87, 020407 (2013).

    Article  Google Scholar 

  35. Wienholdt, S., Hinzke, D., Carva, K., Oppeneer, P. M. & Nowak, U. Orbital-resolved spin model for thermal magnetization switching in rare-earth-based ferrimagnets. Phys. Rev. B 88, 020406 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Fuhrman and R. Tolley for technical assistance with optical measurements and fruitful discussion, and J. M. Dubois for his constant support. This work was supported by the ANR, ANR-10-BLANC-1005 ‘Friends’, and work at UCSD was partially supported by a grant from the Advanced Storage Technology Consortium and the Office of Naval Research (ONR) MURI programme. It was also supported by The Partner University Fund ‘Novel Magnetic Materials for Spin Torque Physics’ as well as the European Project (OP2M FP7-IOF-2011-298060) and the Region Lorraine. V.U. was supported by DOE, Office of Basic Energy Sciences award #DE-SC0003678.

Author information

Authors and Affiliations

Authors

Contributions

S.M., M.H., Y.F., M.A. and E.E.F. designed and coordinated the project; M.G., C-H.L., M.H., G.M. and S.M. grew, characterized and optimized the samples. C-H.L., D.S., L.P., S.A., V.U., M.C. and S.M. built and operated the Kerr microscope and the pump laser set-up. S.M. and E.E.F. coordinated work on the paper with contributions from D.S., M.H., S.A., M.C., M.A. and regular discussions with all authors.

Corresponding authors

Correspondence to S. Mangin or E. E. Fullerton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangin, S., Gottwald, M., Lambert, CH. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nature Mater 13, 286–292 (2014). https://doi.org/10.1038/nmat3864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing