Abstract
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Topological surface magnetism and Néel vector control in a magnetoelectric antiferromagnet
npj Quantum Materials Open Access 15 April 2023
-
Spin-flip-driven anomalous Hall effect and anisotropic magnetoresistance in a layered Ising antiferromagnet
Scientific Reports Open Access 28 February 2023
-
Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction
Nature Open Access 18 January 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Umetsu, R. Y., Sakuma, A. & Fukamichi, K. Magnetic anisotropy energy of antiferromagnetic L10-type equiatomic Mn alloys. Appl. Phys. Lett. 89, 052504 (2006).
Szunyogh, L., Lazarovits, B., Udvardi, L., Jackson, J. & Nowak, U. Giant magnetic anisotropy of the bulk antiferromagnets IrMn and IrMn3 from first principles. Phys. Rev. B 79, 020403 (2009).
Thomson, W. On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857).
McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).
Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferro-magnetic spintronics. Phys. Rev. B 81, 212409 (2010).
Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011).
Duine, R. Spintronics: An alternating alternative. Nature Mater. 10, 345 (2011).
Marti, X. et al. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Phys. Rev. Lett. 108, 017201 (2012).
Wang, Y. Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).
Petti, D. et al. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).
Marder, M. P. Condensed Matter Physics (Wiley, (2000).
Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).
Shirane, G., Chen, C. W., Flinn, P. A. & Nathans, R. Mossbauer study of hyperfine fields and isomer shifts in the Fe–Rh alloys. Phys. Rev. 131, 183–190 (1963).
Sharma, M. et al. Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition. J. Appl. Phys. 109, 083913 (2011).
Mariager, S. O., Guyader, L. L., Buzzi, M., Ingold, G. & Quitmann, C. Imaging the antiferro-magnetic to ferromagnetic first order phase transition of FeRh. Preprint at http://arxiv.org/abs/1301.4164
Banhart, J. & Ebert, H. First-principles theory of spontaneous-resistance anisotropy and spontaneous Hall effect in disordered ferromagnetic alloys. Europhys. Lett. 32, 517–522 (1995).
Ebert, H., Vernes, A. & Banhart, J. Anisotropic electrical resistivity of ferromagnetic Co–Pd and Co–Pt alloys. Phys. Rev. B 54, 8479–8486 (1996).
Vernes, A, Ebert, H. & Banhart, J. Electronic conductivity in NiCr and NiCu fcc alloy systems. Phys. Rev. B 68, 134404 (2003).
Turek, I. & Zalezak, T. Residual resistivity and its anisotropy in random CoNi and CuNi ferromagnetic alloys. J. Phys. Conf. Ser. 200, 052029 (2010).
Turek, I., Kudrnovský, J. & Drchal, V. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. Phys. Rev. B 86, 014405 (2012).
Gould, C. et al. Tunneling anisotropic magnetoresistance: A spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).
Brey, L., Tejedor, C. & Fernández-Rossier, J. Tunnel magneto-resistance in GaMnAs: Going beyond Jullière formula. Appl. Phys. Lett. 85, 1996–1998 (2004).
Shick, A. B., Máca, F., Mašek, J. & Jungwirth, T. Prospect for room temperature tunnelling anisotropic magnetoresistance effect: Density of states anisotropies in CoPt systems. Phys. Rev. B 73, 024418 (2006).
Gao, L. et al. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers. Phys. Rev. Lett. 99, 226602 (2007).
Moser, J. et al. Tunneling anisotropic magnetoresistance and spin–orbit coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 100, 056601 (2007).
Park, B. G. et al. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO x /Pt structures. Phys. Rev. Lett. 100, 087204 (2008).
Marti, X. et al. Anisotropic magnetoresistance in antiferromagnetic semiconductor Sr2IrO4 epitaxial heterostructure. Preprint at http://arxiv.org/abs/1303.4704
Rushforth, A. W. et al. Anisotropic magnetoresistance components in (Ga,Mn)As. Phys. Rev. Lett. 99, 147207 (2007).
Stöhr, J., Padmore, H. A., Anders, S., Stammler, T. & Sheinfein, M. R. Principles of X-ray magnetic dichroism spectromiscroscopy. Surf. Rev. Lett. 5, 1297–1308 (1998).
Kuneš, J. & Oppeneer, P. M. Anisotropic x-ray magnetic linear dichroism at the L edges of cubic Fe, Co, and Ni: Ab initio calculations and model theory. Phys. Rev. B 67, 024431 (2003).
Chappert, C., Fert, A. & Dau, F. N. V. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189 (2011).
Liu, L. et al. Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555–558 (2012).
Kurebayashi, H. et al. Observation of a Berry phase anti-damping spin-orbit torque. Preprint at http://arxiv.org/abs/1306.1893
Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).
Acknowledgements
The authors acknowledge the support from the NSF (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems, Cooperative Agreement Award EEC-1160504) and DOE. Transmission electron microscopy characterization was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02—05CH11231. J.F. acknowledges financial support from the Spanish Government (Projects MAT2011-29269-C03, CSD2007-00041) and Generalitat de Catalunya (2009 SGR 00376); C.F. acknowledges financial support from the Spanish Government (Projects MAT2012-33207, CSD2007-00041). I.F. acknowledges a Beatriu de Pinós postdoctoral scholarship (2011 BP-A 00220) and the Catalan Agency for Management of University and Research Grants (AGAUR-Generalitat de Catalunya). X.M. acknowledges the Grant Agency of the Czech Republic No. P204/11/P339. Research at the University of Nottingham was funded by EPSRC grant EP/K027808/1. T.J. acknowledges support from the ERC Advanced Grant 268066, Praemium Academiae of the Academy of Sciences of the Czech Republic, and from the Ministry of Education of the Czech Republic Grant LM2011026. S.S. acknowledges funding by STARnet FAME. J. Kuneš 83 and I.T. acknowledge the Czech Science Foundation No. P204/11/1228.
Author information
Authors and Affiliations
Contributions
Sample preparation, R.J.P., J.D.C., L.Y.; scanning transmission electron microscopy, C.T.N.; magnetotransport and structural characterization, I.F. and C.F.; data analysis, I.F., C.F., P.W., J-H.C. and D.Y.; X-ray linear dichroism, J.L., E.A. and Q.H.; theory, J. Kudrnovský, I.T. and J. Kuneš; writing and project planning, X.M., T.J., J.F., P.W., S.S. and R.R.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Marti, X., Fina, I., Frontera, C. et al. Room-temperature antiferromagnetic memory resistor. Nature Mater 13, 367–374 (2014). https://doi.org/10.1038/nmat3861
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3861
This article is cited by
-
Spin-flip-driven anomalous Hall effect and anisotropic magnetoresistance in a layered Ising antiferromagnet
Scientific Reports (2023)
-
Coherent antiferromagnetic spintronics
Nature Materials (2023)
-
Topological surface magnetism and Néel vector control in a magnetoelectric antiferromagnet
npj Quantum Materials (2023)
-
Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction
Nature (2023)
-
Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction
Nature (2023)