Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutually tangled colloidal knots and induced defect loops in nematic fields


Colloidal dispersions in liquid crystals can serve as asoft-matter toolkit for the self-assembly of composite materials with pre-engineered properties and structures that are highly dependent on particle-induced topological defects1,2,3. Here, we demonstrate that bulk and surface defects in nematic fluids can be patterned by tuning the topology of colloidal particles dispersed in them. In particular, by taking advantage of two-photon photopolymerization techniques to make knot-shaped microparticles, we show that the interplay of the topologies of the knotted particles, the nematic field and the induced defects leads to knotted, linked and other topologically non-trivial field configurations4,5,6,7,8,9,10,11,12. These structures match theoretical predictions made on the basis of the minimization of the elastic free energy and satisfy topological constraints4,5. Our approach may find uses in self-assembled topological superstructures of knotted particles linked by nematic fields, in topological scaffolds supporting the decoration of defect networks with nanoparticles1, and in modelling other physical systems exhibiting topologically analogous phenomena12,13,14,15,16.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photopolymerized knotted particles and their arrays.
Figure 2: A trefoil knot particle with tangential boundary conditions in an aligned liquid crystal.
Figure 3: A colloidal trefoil knot with perpendicular surface boundary conditions.
Figure 4: A colloidal knot T(5,3) with tangential boundary conditions.
Figure 5: Torus knot T(5,2) particles with tangential boundary conditions.


  1. Senyuk, B. et al. Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett. 12, 955–963 (2012).

    Article  CAS  Google Scholar 

  2. Alexander, G. P., Chen, B. G., Matsumoto, E. A. & Kamien, R. D. Colloquium: Disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys. 84, 497–514 (2012).

    Article  CAS  Google Scholar 

  3. Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. & Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).

    Article  CAS  Google Scholar 

  4. Livingston, C. Knot Theory (The Mathematical Association of America, Indiana University-Bloomington, 1993).

    Google Scholar 

  5. Kauffman, L. H. Knots and Physics 3rd edn (World Scientific, 2000).

    Google Scholar 

  6. Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated optical vortex knots. Nature Phys. 6, 118–121 (2010).

    Article  CAS  Google Scholar 

  7. Kleckner, D. M. & Irvine, W. T. Creation and dynamics of knotted vortices. Nature Phys. 9, 253–258 (2013).

    Article  CAS  Google Scholar 

  8. Yi-Shi, D., Li, Z. & Xin-Hui, Z. Topological structure of knotted vortex lines in liquid crystals. Commun. Theor. Phys. 47, 1129–1134 (2007).

    Article  Google Scholar 

  9. Faddeev, L. & Niemi, A. J. Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997).

    Article  CAS  Google Scholar 

  10. Bouligand, Y., Derrida, B., Poenaru, V., Pomeau, Y. & Toulouse, G. Distortions with double topological character: The case of cholesterics. J. Physique 39, 863–867 (1978).

    Article  CAS  Google Scholar 

  11. Smalyukh, I. I., Lansac, Y., Clark, N. & Trivedi, R. Three-dimensional structure and multistable optical switching of triple twist Toron quasiparticles in anisotropic fluids. Nature Mater 9, 139–145 (2010).

    Article  CAS  Google Scholar 

  12. Thomson, W. On vortex atoms. Phil. Mag. 34, 15–24 (1867).

    Article  Google Scholar 

  13. Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: Defect dynamics in liquid crystals. Science 251, 1336–1342 (1991).

    Article  CAS  Google Scholar 

  14. Bowick, M. J., Chandar, L., Schiff, E. A. & Srivastava, A. M. The cosmological Kibble mechanism in the laboratory: string formation in liquid crystals. Science 263, 943–945 (1994).

    Article  CAS  Google Scholar 

  15. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    Article  CAS  Google Scholar 

  16. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 2000).

    Google Scholar 

  17. Poulin, P., Holger, S., Lubensky, T. C. & Weitz, D. A. Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1773 (1997).

    Article  CAS  Google Scholar 

  18. Nelson, D. R. Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125–1129 (2002).

    Article  CAS  Google Scholar 

  19. Loudet, J. C., Barois, P. & Poulin, P. Colloidal ordering from phase separation in a liquid- crystalline continuous phase. Nature 407, 611–613 (2000).

    Article  CAS  Google Scholar 

  20. Martinez, A., Mireles, H. C. & Smalyukh, I. I. Large-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayers. Proc. Natl Acad. Sci. USA 108, 20891–20896 (2011).

    Article  CAS  Google Scholar 

  21. Wood, T. A., Lintuvuori, J. S., Schofield, A. B., Marenduzzo, D. & Poon, W. C. K. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334, 79–83 (2011).

    Article  CAS  Google Scholar 

  22. Ravnik, M. & Žumer, S. Landau–de Gennes modelling of nematic liquid crystal colloids. Liq. Cryst. 36, 1201–1214 (2009).

    Article  CAS  Google Scholar 

  23. Senyuk, B. et al. Topological colloids. Nature 493, 200–205 (2013).

    Article  CAS  Google Scholar 

  24. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  25. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  CAS  Google Scholar 

  26. Martinez, A., Lee, T., Asavei, Th., Rubinsztein-Dunlop, H. & Smalyukh, I. I. Three-dimensional complex-shaped photopolymerized microparticles at liquid crystal interfaces. Soft Matter 8, 2432–2437 (2012).

    Article  CAS  Google Scholar 

  27. Lee, T., Trivedi, R. P. & Smalyukh, I. I. Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Lett. 35, 3447–3449 (2010).

    Article  CAS  Google Scholar 

  28. Trivedi, R. P., Lee, T., Bertness, K. & Smalyukh, I. I. Unconventional structure-assisted optical manipulation of high-index nanowires in liquid crystals. Opt Express 18, 27658–27669 (2010).

    Article  CAS  Google Scholar 

  29. Čopar, S. & Žumer, S. Nematic baids: Topological invariants and rewiring of disclinations. Phys. Rev. Lett. 106, 177801 (2011).

    Article  Google Scholar 

  30. Buniy, R. V. & Kephart, T. Glueballs and the universal energy spectrum of tight knots and links. Int. J. Mod. Phys. A 20, 1252–1259 (2005).

    Article  CAS  Google Scholar 

Download references


We thank G. Alexander, B. Chen, N. Clark, S. Čopar, M. Dennis, W. Irvine, R. Kamien, T. Lubensky, I. Muševič, L. Radzihovsky and B. Senyuk for discussions. M.R., S.Ž. and I.I.S. acknowledge the hospitality of the KITP programme ‘Knotted Fields’ and the Isaac Newton Institute’s programme ‘Mathematics of Liquid Crystals’, during which this work was discussed. We acknowledge the support of the National Science Foundation Grants DMR-0847782 (R.V., B.L., I.I.S.), DMR-0820579 (A.M., I.I.S.) and DGE-0801680 (A.M., I.I.S.), as well as the SLO ARRS program P1-0099, EU FP7 CIG FREEFLUID, SLO ARRS grant Z1-5441, and the Center of Excellence NAMASTE (M.R., S.Ž.).

Author information

Authors and Affiliations



A.M., B.L., R.V. and I.I.S. performed experimental work and analysed experimental results. A.M. built the two-photon polymerization set-up. M.R. and S.Ž. carried out numerical modelling of the structures of defects and fields. A.M. and I.I.S. experimentally reconstructed the director fields induced by colloids and compared them with theoretical results by modelling 3PEF-PM images. M.R., S.Ž. and I.I.S. analysed models of director fields and defects satisfying topological constraints. A.M., M.R. and I.I.S. wrote the manuscript. I.I.S. conceived and designed the project.

Corresponding author

Correspondence to Ivan I. Smalyukh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1427 kb)

Supplementary Information

Supplementary Movie S1 (AVI 824 kb)

Supplementary Information

Supplementary Movie S2 (AVI 1154 kb)

Supplementary Information

Supplementary Movie S3 (AVI 1064 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martinez, A., Ravnik, M., Lucero, B. et al. Mutually tangled colloidal knots and induced defect loops in nematic fields. Nature Mater 13, 258–263 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing