Abstract
The discovery of the spin-torque effect has made magnetic nanodevices realistic candidates for active elements of memory devices and applications. Magnetoresistive effects allow the read-out of increasingly small magnetic bits, and the spin torque provides an efficient tool to manipulate — precisely, rapidly and at low energy cost — the magnetic state, which is in turn the central information medium of spintronic devices. By keeping the same magnetic stack, but by tuning a device's shape and bias conditions, the spin torque can be engineered to build a variety of advanced magnetic nanodevices. Here we show that by assembling these nanodevices as building blocks with different functionalities, novel types of computing architecture can be envisaged. We focus in particular on recent concepts such as magnonics and spintronic neural networks.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Associative memory by virtual oscillator network based on single spin-torque oscillator
Scientific Reports Open Access 22 September 2023
-
cmtj: Simulation package for analysis of multilayer spintronic devices
npj Computational Materials Open Access 06 April 2023
-
Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures
Nature Communications Open Access 14 March 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, C., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).
Myers, E., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).
Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).
Grollier, J. et al. Spin-polarized current induced switching in Co/Cu/Co pillars. Appl. Phys. Lett. 78, 3663–3665 (2001).
Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013).
Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 100, 132408 (2012).
Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).
Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).
Matsumoto, R. et al. Spin-torque diode measurements of MgO-based magnetic tunnel junctions with asymmetric electrodes. Appl. Phys. Exp. 4, 063001 (2011).
Process Integration, Devices, and Structures (International Technology Roadmap for Semiconductors, 2011).
Fabian, A. et al. Current-induced two-level fluctuations in pseudo-spin-valve (Co/Cu/Co) nanostructures. Phys. Rev. Lett. 91, 257209 (2003).
Urazhdin, S., Birge, N. O., Pratt, W. P. Jr & Bass, J. Current-driven magnetic excitations in permalloy-based multilayer nanopillars. Phys. Rev. Lett. 91, 146803 (2003).
Krivorotov, I. N. et al. Temperature dependence of spin-transfer-induced switching of nanomagnets. Phys. Rev. Lett. 93, 166603 (2004).
Pufall, M. R., Rippard, W. H., Kaka, S., Russek, S. E. & Silva, T. J. Large-angle, gigahertz-rate random telegraph switching induced by spin-momentum transfer. Phys. Rev. B 69, 214409 (2004).
Li, Z. & Zhang, S. Thermally assisted magnetization reversal in the presence of a spin-transfer torque. Phys. Rev. B 69, 134416 (2004).
Fukushima, A. et al. in 2010 Int. Conf. Solid State Devices and Materials Extend. abstr. 1128–1129 (2010).
Sun, J. Z. Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B 62, 570–578 (2000).
Grollier, J. et al. Field dependence of magnetization reversal by spin transfer. Phys. Rev. B 67, 174402 (2003).
Manfrini, M. et al. Agility of vortex-based nanocontact spin torque oscillators. Appl. Phys. Lett. 95, 192507 (2009).
Sato, R., Kudo, K., Nagasawa, T., Suto, H. & Mizushima, K. Simulations and experiments toward high-data-transfer-rate readers composed of a spin-torque oscillator. IEEE Trans. Mag. 48, 1758–1764 (2012).
Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).
Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).
Deac, A. M. et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Phys. 4, 803–809 (2008).
Houssameddine, D. et al. Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions. Appl. Phys. Lett. 93, 022505 (2008).
Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nature Commun. 1, 8 (2010).
Pufall, M. R., Rippard, W. H., Kaka, S., Silva, T. J. & Russek, S. E. Frequency modulation of spin-transfer oscillators. Appl. Phys. Lett. 86, 082506 (2005).
Keller, M. W., Kos, A. B., Silva, T. J., Rippard, W. H. & Pufall, M. R. Time domain measurement of phase noise in a spin torque oscillator. Appl. Phys. Lett. 94, 193105 (2009).
Locatelli, N. et al. Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque. Appl. Phys. Lett. 98, 062501 (2011).
Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater. 9, 984–988 (2010).
Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).
Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).
Ishibashi, S. et al. Large diode sensitivity of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Exp. 3, 073001 (2010).
Chua, L. Memristor-missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).
Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nature Nanotech. 8, 13–24 (2012).
Krzysteczko, P., Reiss, G. & Thomas, A. Memristive switching of MgO based magnetic tunnel junctions. Appl. Phys. Lett. 95, 112508 (2009).
Prezioso, M. et al. A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 25, 534–538 (2013).
Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009).
Grollier, J. et al. Magnetic domain wall motion by spin transfer. Comptes Rendus Physique 12, 309–317 (2011).
Oh, S.-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Phys. 5, 898–902 (2009).
Tang, Y.-H., Kioussis, N., Kalitsov, A., Butler, W. H. & Car, R. Influence of asymmetry on bias behavior of spin torque. Phys. Rev. B 81, 054437 (2010).
Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys. 7, 626–630 (2011).
Zhang, X. & Butler, W. H. Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions. Phys. Rev. B 70, 172407 (2004).
Metaxas, P. J. et al. High domain wall velocities via spin transfer torque using vertical current injection. Sci. Rep. 3, 1829 (2013).
Ravelosona, D. et al. Domain wall creation in nanostructures driven by a spin-polarized current. Phys. Rev. Lett. 96, 186604 (2006).
Winterlik, J. et al. Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24, 6283–6287 (2012).
Sukegawa, H., Kasai, S., Furubayashi, T., Mitani, S. & Inomata, K. Spin-transfer switching in an epitaxial spin-valve nanopillar with a full-Heusler Co2FeAl0.5Si0.5 alloy. Appl. Phys. Lett. 96, 042508 (2010).
Mizukami, S. et al. Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. Phys. Rev. Lett. 106, 117201 (2011).
Pinitsoontorn, S. et al. Three-dimensional atom probe investigation of boron distribution in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 93, 071901 (2008).
Fan, Y. et al. Exchange bias of the interface spin system at the Fe/MgO interface. Nature Nanotech. 8, 438–444 (2013).
Cobas, E., Friedman, A. L., van't Erve, O. M. J., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).
Dlubak, B. et al. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 6, 10930–10934 (2012).
Bandiera, S. et al. Spin transfer torque switching assisted by thermally induced anisotropy reorientation in perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 99, 202507 (2011).
Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).
Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012).
De Ranieri, E. et al. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nature Mater. 12, 808–814 (2013).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Igarashi, M., Watanabe, K., Hirayama, Y. & Shiroishi, Y. Feasibility of bit patterned magnetic recording with microwave assistance over 5 Tbitps. IEEE Trans. Magn. 48, 3284–3287 (2012).
Ohno, H., Endoh, T., Hanyu, T., Kasai, N. & Ikeda, S. Magnetic tunnel junction for nonvolatile CMOS logic. IEDM Tech. Dig. 218–221 (2010); http://dx.doi.org/10.1109/IEDM.2010.5703329
Lakys, Y., Zhao, W., Klein, J.-O. & Chappert, C. in IEEE Int. Symp. Circuits and Systems 2945–2948 (2012); http://dx.doi.org/10.1109/ISCAS.2012.6271934
Prenat, G. et al. Beyond MRAM, CMOS/MTJ integration for logic components. IEEE Trans. Magn. 45, 3400–3405 (2009).
Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).
Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).
Niemier, M. T. et al. Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011).
Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).
Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).
Lyle, A. et al. Spin transfer torque programming dipole coupled nanomagnet arrays. Appl. Phys. Lett. 100, 012402 (2012).
Dubey, P. Recognition, mining and synthesis moves computers to the era of tera. Technology Intel Magazine 09, 3–10 (2005).
Demokritov, S. O. & Slavin, A. N. (eds) Magnonics — From Fundamentals to Applications (Topics in Applied Physics Vol. 125, Springer, 2013).
Eshaghian-Wilner, M. Bio-Inspired and Nanoscale Integrated Computing (Wiley, 2009).
Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).
Hansen, U.-H., Demidov, V. E. & Demokritov, S. O. Dual-function phase shifter for spin-wave logic applications. Appl. Phys. Lett. 94, 252502 (2009).
Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).
Lee, K.-S. & Kima, S.-K. Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).
Cherepov, S. et al. in 12th Joint Magnetism and Magnetic Materials and IEEE Int. Magnetics Conf. 65 (2013).
Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).
Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).
Bonetti, S. & Åkerman, J. in Magnonics - From Fundamentals to Applications 177–187 (Topics in Applied Physics Vol. 125, Springer, 2013).
Slavin, A. N. & Krivorotov, I. N. Spin torque devices. US Patent 7,678,475 B2 (2010).
Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).
Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).
Choi, S., Lee, K.-S., Guslienko, K. Y. & Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 98, 087205 (2007).
Djuhana, D., Piao, H.-G., Yu, S.-C., Oh, S. K. & Kim, D.-H. Magnetic domain wall collision around the Walker breakdown in ferromagnetic nanowires. J. Appl. Phys. 106, 103926 (2009).
Malinowski, G., Boulle, O. & Kläui, M. Current-induced domain wall motion in nanoscale ferromagnetic elements. J. Phys. D 44, 384005 (2011).
Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 270–273 (2007).
Petit-Watelot, S. et al. Commensurability and chaos in magnetic vortex oscillations. Nature Phys. 8, 682–687 (2012).
Hertel, R., Wulfhekel, W. & Kirschner, J. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004).
Seo, S.-M., Lee, K.-J., Yang, H. & Ono, T. Current-induced control of spin-wave attenuation. Phys. Rev. Lett. 102, 147202 (2009).
Demidov, V. E., Demokritov, S. O., Reiss, G. & Rott, K. Effect of spin-polarized electric current on spin-wave radiation by spin-valve nanocontacts. Appl. Phys. Lett. 90, 172508 (2007).
Schemmel, J., Grübl, A., Meier, K. & Mueller, E. in Proc. Int. Joint Conf. Neural Networks 1–6 (2006); http://dx.doi.org/10.1109/IJCNN.2006.246651
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nature Mater. 12, 114–117 (2013).
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization — A Universal Concept in Nonlinear Sciences Vol. 12 (Cambridge Univ. Press, 2001).
Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15, 1063–1070 (2004).
Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
Grollier, J., Cros, V. & Fert, A. Synchronization of spin-transfer oscillators driven by stimulated microwave currents. Phys. Rev. B 73, 060409(R) (2006).
Slavin, A. N. & Tiberkevich, V. S. Theory of mutual phase locking of spin-torque nanosized oscillators. Phys. Rev. B 74, 104401 (2006).
Iacocca, E. & Akerman, J. Destabilization of serially connected spin-torque oscillators via non-Adlerian dynamics. J. Appl. Phys. 110, 103910 (2011).
Ruotolo, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotech. 4, 528–532 (2009).
Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nature Rev. Neurosci. 12, 105–118 (2011).
Hoppensteadt, F. C. & Izhikevich, E. M. Oscillatory neurocomputers with dynamic connectivity. Phys. Rev. Lett. 82, 2983–2986 (1999).
Aonishi, T. Phase transitions of an oscillator neural network with a standard Hebb learning rule. Phys. Rev. E 58, 4865–4871 (1998).
Georges, B., Grollier, J., Cros, V. & Fert, A. Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: an analytical study. Appl. Phys. Lett. 92, 232504 (2008).
Csaba, G. et al. in Proc. 13th Int. Workshop Cellular Nanoscale Netw. Appl. (2012); http://dx.doi.org/10.1109/CNNA.2012.6331474
Roska, T. et al. in Proc. 13th Int. Workshop Cellular Nanoscale Netw. Appl. (2012); http://dx.doi.org/10.1109/CNNA.2012.6331463
Levitan, S. P. et al. Proc. 13th Int. Workshop Cellular Nanoscale Netw. Appl. (2012); http://dx.doi.org/10.1109/CNNA.2012.6331473
Macia, F., Kent, A. D. & Hoppensteadt, F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011).
Sharad, M., Augustine, C., Panagopoulos, G. & Roy, K. Spin-based neuron model with domain-wall magnets as synapse. IEEE Trans. Nanotechnology 11, 843–853 (2012).
Sharad, M., Augustine, C. & Roy, K. in IEEE Int. Electron Devices Meeting 11.6.1–11.6.4 (2012); http://dx.doi.org/10.1109/IEDM.2012.6479026
Sharad, M., Augustine, C., Panagopoulos, G. & Roy, K. Proposal for neuromorphic hardware using spin devices. Preprint at http://arXiv.org/abs/1206.3227 (2012).
Krzysteczko, P., Münchenberger, J., Schäfers, M., Reiss, G. & Thomas, A. The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv. Mater. 24, 762–766 (2012).
Frégnac, Y., Rudolph, M., Davison, A. & Destexhe, A. in Biological Networks Vol. 8 (ed. Képès, F.) 291–33 (World Scientific, 2006).
Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).
Cheng, X., Boone, C. T., Zhu, J. & Krivorotov, I. N. Nonadiabatic stochastic resonance of a nanomagnet excited by spin torque. Phys. Rev. Lett. 105, 047202 (2010).
Faure, P. & Korn, H. Is there chaos in the brain - 1 - Concepts of non-linear dynamics and methods of investigation. C. R. Acad. Sci. Paris, Life Science 324, 773–793 (2001).
Lindner, B. in Stochastic Methods in Neuroscience (eds Laing, C. & Lord, G. J.) Ch. 1 (Oxford Univ. Press, 2009).
Modha, D. S. & Parkin, S. S. P. Stochastic synapse memory element with spike-timing dependent plasticity (STDP). US Patent US7978510 B2 (2011).
Acknowledgements
We would like to acknowledge the spin-torque team at Unité Mixte de Physique CNRS/Thales, especially A. Fert, and all present and past students. We thank all the team of S. Yuasa in AIST Tsukuba Japan for invaluable collaboration. We are grateful to O. Temam, D. Querlioz, P. Bessière and J. Droulez for stimulating discussions. J. G. and N. L. acknowledge financial support from the European Research Council (ERC “NanoBrain” 2010 Stg 259068).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nature Mater 13, 11–20 (2014). https://doi.org/10.1038/nmat3823
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3823
This article is cited by
-
Associative memory by virtual oscillator network based on single spin-torque oscillator
Scientific Reports (2023)
-
cmtj: Simulation package for analysis of multilayer spintronic devices
npj Computational Materials (2023)
-
Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures
Nature Communications (2023)
-
Spintronics intelligent devices
Science China Physics, Mechanics & Astronomy (2023)
-
Freezing and thawing magnetic droplet solitons
Nature Communications (2022)