Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epithelial bridges maintain tissue integrity during collective cell migration

Abstract

The ability of skin to act as a barrier is primarily determined by the efficiency of skin cells to maintain and restore its continuity and integrity. In fact, during wound healing keratinocytes migrate collectively to maintain their cohesion despite heterogeneities in the extracellular matrix. Here, we show that monolayers of human keratinocytes migrating along functionalized micropatterned surfaces comprising alternating strips of extracellular matrix (fibronectin) and non-adherent polymer form suspended multicellular bridges over the non-adherent areas. The bridges are held together by intercellular adhesion and are subjected to considerable tension, as indicated by the presence of prominent actin bundles. We also show that a model based on force propagation through an elastic material reproduces the main features of bridge maintenance and tension distribution. Our findings suggest that multicellular bridges maintain tissue integrity during wound healing when cell–substrate interactions are weak and may prove helpful in the design of artificial scaffolds for skin regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Keratinocytes migrating on microcontact-printed fibronectin patterns form multicellular suspended epithelial bridges.
Figure 2: Migration dynamics of keratinocytes under different geometrical confinements.
Figure 3: Epithelial bridges are subjected to considerable tension.
Figure 4: Modelling epithelial-bridge formation as deformation of an elastic membrane.
Figure 5: Comparison of cell–cell rearrangements within HaCaT and MDCK monolayers using PIV.

Similar content being viewed by others

References

  1. Diegelmann, R. F. & Evans, M. C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).

    Article  CAS  Google Scholar 

  2. Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179–183 (1992).

    Article  CAS  Google Scholar 

  3. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  Google Scholar 

  4. MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 445, 874–880 (2007).

    Article  CAS  Google Scholar 

  5. Raja Sivamani, K., Garcia, M. S. & Isseroff, R. R. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front. Biosci. 12, 2849–2868 (2007).

    Article  Google Scholar 

  6. Greaves, N. S., Iqbal, S. A., Baguneid, M. & Bayat, A. The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen. 21, 194–210 (2013).

    Article  Google Scholar 

  7. Nelson, C. M. & Tien, J. Microstructured extracellular matrices in tissue engineering and development. Curr. Opin. Biotechnol. 17, 518–523 (2006).

    Article  CAS  Google Scholar 

  8. Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995).

    CAS  Google Scholar 

  9. Rossier, O. M. et al. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J. 29, 1055–1068 (2010).

    Article  CAS  Google Scholar 

  10. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    Article  CAS  Google Scholar 

  11. Borghi, N., Lowndes, M., Maruthamuthu, V., Gardel, M. L. & Nelson, W. J. Regulation of cell motile behaviour by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl Acad. Sci. USA 107, 13324–13329 (2010).

    Article  CAS  Google Scholar 

  12. Rosen, P. & Misfeldt, D. S. Cell density determines epithelial migration in culture. Proc. Natl Acad. Sci. USA 77, 4760–4763 (1980).

    Article  CAS  Google Scholar 

  13. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  14. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    Article  CAS  Google Scholar 

  15. Vedula, S. R. K. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).

    Article  CAS  Google Scholar 

  16. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

    Article  CAS  Google Scholar 

  17. Theveneau, E. & Mayor, R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24, 677–684 (2012).

    Article  CAS  Google Scholar 

  18. Sherer, N. M. & Mothes, W. Cytonemes and tunnelling nanotubules in cell–cell communication and viral pathogenesis. Trends Cell Biol. 18, 414–420 (2008).

    Article  CAS  Google Scholar 

  19. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  Google Scholar 

  20. Zani, B. G., Indolfi, L. & Edelman, E. R. Tubular bridges for bronchial epithelial cell migration and communication. PLoS ONE 5, e8930 (2010).

    Article  CAS  Google Scholar 

  21. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: Cellular processes that project to the principal signalling centre in Drosophila imaginal discs. Cell 97, 599–607 (1999).

    Article  CAS  Google Scholar 

  22. Bischofs, I. B., Klein, F., Lehnert, D., Bastmeyer, M. & Schwarz, U. S. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J. 95, 3488–3496 (2008).

    Article  CAS  Google Scholar 

  23. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    Article  CAS  Google Scholar 

  24. Hsu, H. J., Lee, C. F., Locke, A., Vanderzyl, S. Q. & Kaunas, R. Stretch-induced stress fibre remodelling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS ONE 5, e12470 (2010).

    Article  CAS  Google Scholar 

  25. Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fibre organization. Proc. Natl Acad. Sci. USA 102, 15895–15900 (2005).

    Article  CAS  Google Scholar 

  26. Hirata, H., Tatsumi, H. & Sokabe, M. Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim. Biophys. Acta 1770, 1115–1127 (2007).

    Article  CAS  Google Scholar 

  27. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).

    Article  CAS  Google Scholar 

  28. Millan, J. et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 8, 11 (2010).

    Article  CAS  Google Scholar 

  29. Taguchi, K., Ishiuchi, T. & Takeichi, M. Mechanosensitive EPLIN-dependent remodelling of adherens junctions regulates epithelial reshaping. J. Cell Biol. 194, 643–656 (2011).

    Article  CAS  Google Scholar 

  30. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biol. 12, 533–542 (2010).

    Article  CAS  Google Scholar 

  31. Benjamin, J. M. et al. AlphaE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion. J. Cell Biol. 189, 339–352 (2010).

    Article  CAS  Google Scholar 

  32. Joanny, J. F. & de Gennes, P. G. A model for contact-angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).

    Article  CAS  Google Scholar 

  33. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity Vol. 7, Ch. 13 (Pergamon, 1959).

    Google Scholar 

  34. Kobiela, T. et al. The influence of surfactants and hydrolyzed proteins on keratinocytes viability and elasticity. Skin Res. Technol. 19, e200–e208 (2013).

    Article  Google Scholar 

  35. Fung, C. K. et al. Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM). IEEE Trans. Nanobiosci. 10, 9–15 (2011).

    Article  Google Scholar 

  36. Lulevich, V., Yang, H. Y., Isseroff, R. R. & Liu, G. Y. Single cell mechanics of keratinocyte cells. Ultramicroscopy 110, 1435–1442 (2010).

    Article  CAS  Google Scholar 

  37. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  Google Scholar 

  38. Mertz, A. F. et al. Scaling of traction forces with the size of cohesive cell colonies. Phys. Rev. Lett. 108, 198101 (2012).

    Article  CAS  Google Scholar 

  39. Reffay, M. et al. Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophys. J. 100, 2566–2575 (2011).

    Article  CAS  Google Scholar 

  40. Leong, M. C., Vedula, S. R. K., Lim, C. T. & Ladoux, B. Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun. Integrative Biol. 6, e23197 (2013).

    Article  Google Scholar 

  41. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).

    Article  CAS  Google Scholar 

  42. Weiss, P. & Matoltsy, A. G. Wound healing in chick embryos in vivo and in vitro. Dev. Biol. 1, 302–326 (1959).

    Article  Google Scholar 

  43. Belford, D. A. The mechanism of excisional fetal wound repair in vitro is responsive to growth factors. Endocrinology 138, 3987–3996 (1997).

    Article  CAS  Google Scholar 

  44. Kratz, G. Modelling of wound healing processes in human skin using tissue culture. Microsc. Res. Tech. 42, 345–350 (1998).

    Article  CAS  Google Scholar 

  45. Gautrot, J. E. et al. Mimicking normal tissue architecture and perturbation in cancer with engineered micro-epidermis. Biomaterials 33, 5221–5229 (2012).

    Article  CAS  Google Scholar 

  46. Martin, P., Nobes, C., McCluskey, J. & Lewis, J. Repair of excisional wounds in the embryo. Eye 8 (Pt 2), 155–160 (1994).

    Article  Google Scholar 

  47. Grasso, S., Hernandez, J. A. & Chifflet, S. Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. Cell Physiol. 293, C1327–C1337 (2007).

    Article  CAS  Google Scholar 

  48. Wilcox, M., DiAntonio, A. & Leptin, M. The function of PS integrins in Drosophila wing morphogenesis. Development 107, 891–897 (1989).

    CAS  Google Scholar 

  49. Bokel, C. & Brown, N. H. Integrins in development: Moving on, responding to, and sticking to the extracellular matrix. Dev. Cell 3, 311–321 (2002).

    Article  CAS  Google Scholar 

  50. DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137, 729–742 (1997).

    Article  CAS  Google Scholar 

  51. Fink, J. et al. Comparative study and improvement of current cell micro-patterning techniques. Lab Chip 7, 672–680 (2007).

    Article  CAS  Google Scholar 

  52. Sveen, J. K. MatPIV—the PIV toolbox for MATLAB. http://folk.uio.no/jks/matpiv/Download/ (2006).

  53. Mertz, A. F. et al. Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc. Natl Acad. Sci. USA 110, 842–847 (2013).

    Article  CAS  Google Scholar 

  54. Yu, H., Xiong, S., Tay, C. Y., Leong, W. S. & Tan, L. P. A novel and simple microcontact printing technique for tacky, soft substrates and/or complex surfaces in soft tissue engineering. Acta Biomater. 8, 1267–1272 (2012).

    Article  CAS  Google Scholar 

  55. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Gay, J-B. Fournier, A. J. Kabla, R-M. Mège, J-M. di Meglio and W. James Nelson for helpful discussions. The authors would also like to thank M. Ashraf and S. Vaishnavi for the microfabrication and C. Xi for the illustrations. Financial support from the Agence Nationale de la Recherche (ANR 2010 BLAN 1515 awarded to B.L.), the Human Frontier Science Program (grant RGP0040/2012) and the Mechanobiology Institute (Team project funding) is gratefully acknowledged. B.L. acknowledges the Institut Universitaire de France (IUF) for its support. The research was conducted in the scope of the International Associated Laboratory Cell Adhesion France Singapore (CAFS). X.T. acknowledges financial support from the Spanish Ministry for Economy and Competitiveness (BFU2012-38146), and the European Research Council (Grant Agreement 242993).

Author information

Authors and Affiliations

Authors

Contributions

S.R.K.V., B.L. and C.T.L. designed research, S.R.K.V., M.H.N. and Y.T. performed experiments, H.H. contributed new reagents, S.R.K.V., A.B., H.H., X.T. and B.L. analysed data, S.R.K.V. and B.L. wrote the paper, and B.L. and C.T.L. oversaw the project. All authors read the manuscript and commented on it.

Corresponding authors

Correspondence to Chwee Teck Lim or Benoit Ladoux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1980 kb)

Supplementary Information

Supplementary Movie S2 (MOV 813 kb)

Supplementary Information

Supplementary Movie S3 (MOV 1048 kb)

Supplementary Information

Supplementary Movie S4 (MOV 2500 kb)

Supplementary Information

Supplementary Movie S5 (MOV 451 kb)

Supplementary Information

Supplementary Movie S6 (MOV 2172 kb)

Supplementary Information

Supplementary Movie S7 (MOV 669 kb)

Supplementary Information

Supplementary Movie S8 (MOV 485 kb)

Supplementary Information

Supplementary Movie S9 (MOV 693 kb)

Supplementary Information

Supplementary Movie S10 (MOV 190 kb)

Supplementary Information

Supplementary Movie S11 (MOV 1151 kb)

Supplementary Information

Supplementary Movie S12 (MOV 319 kb)

Supplementary Information

Supplementary Movie S13 (MOV 583 kb)

Supplementary Information

Supplementary Movie S14 (MOV 1006 kb)

Supplementary Information

Supplementary Movie S15 (MOV 456 kb)

Supplementary Information

Supplementary Movie S16 (MOV 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedula, S., Hirata, H., Nai, M. et al. Epithelial bridges maintain tissue integrity during collective cell migration. Nature Mater 13, 87–96 (2014). https://doi.org/10.1038/nmat3814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing