Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct visualization of magnetoelectric domains


The coupling between the magnetic and electric dipoles in multiferroic and magnetoelectric materials holds promise for conceptually novel electronic devices1,2,3. This calls for the development of local probes of the magnetoelectric response, which is strongly affected by defects in magnetic and ferroelectric ground states. For example, multiferroic hexagonal rare earth manganites exhibit a dense network of boundaries between six degenerate states of their crystal lattice, which are locked to both ferroelectric and magnetic domain walls. Here we present the application of a magnetoelectric force microscopy technique that combines magnetic force microscopy with in situ modulating high electric fields. This method allows us to image the magnetoelectric response of the domain patterns in hexagonal manganites directly. We find that this response changes sign at each structural domain wall, a result that is corroborated by symmetry analysis and phenomenological modelling4, and provides compelling evidence for a lattice-mediated magnetoelectric coupling. The direct visualization of magnetoelectric domains at mesoscopic scales opens up explorations of emergent phenomena in multifunctional materials with multiple coupled orders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of MeFM set-up.
Figure 2: MeFM results of h-ErMnO3.
Figure 3: MeFM images and the H-dependence of the MeFM signal.
Figure 4: TH phase diagram and a cartoon of critical fluctuation in the A2 phase.


  1. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  2. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  3. Spaldin, N. A., Cheong, S-W. & Ramesh, R. Multiferroics: Past, present, and future. Phys. Today 63, 38–43 (2010).

    Article  Google Scholar 

  4. Das, H., Wysocki, A. L., Geng, Y., Wu, W. & Fennie, C. J. Bulk magnetoelectricity in the hexagonal manganites and ferrites. Preprint at (2013).

  5. Dzyaloshinskii, I. E. On the magneto-electrical effects in antiferromagnets. Zh. Eksp. Teor. Fiz. 37, 881–882 (1959) (English translation in Sov. Phys. JETP 10, 628–629).

    CAS  Google Scholar 

  6. Astrov, D. N. The magnetoelectric effect in antiferromagnetics. Zh. Eksp. Teor. Fiz. 38, 984–985 (1960) (English translation in Sov. Phys. JETP 11, 708–709).

    CAS  Google Scholar 

  7. Folen, V. J., Rado, G. T. & Stalder, E. W. Anisotropy of the magnetoelectric effect in Cr2O3 . Phys. Rev. Lett. 6, 607–608 (1961).

    Article  CAS  Google Scholar 

  8. O’Dell, T. H. The Electrodynamics of Magneto-Electric Media (North-Holland, 1970).

    Google Scholar 

  9. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  10. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  11. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  12. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  Google Scholar 

  13. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  14. Borisov, P., Hochstrat, A., Shvartsman, V. V. & Kleemann, W. Superconducting quantum interference device setup for magnetoelectric measurements. Rev. Sci. Instrum. 78, 106105 (2007).

    Article  CAS  Google Scholar 

  15. Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nature Mater. 8, 558–562 (2009).

    Article  CAS  Google Scholar 

  16. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 . Nature Mater. 9, 253–258 (2010).

    Article  CAS  Google Scholar 

  17. Tokunaga, Y., Taguchi, Y., Arima, T-h. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nature Phys. 8, 838–844 (2012).

    Article  CAS  Google Scholar 

  18. Kagawa, F. et al. Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO3 . Phys. Rev. Lett. 102, 057604 (2009).

    Article  CAS  Google Scholar 

  19. Skumryev, V. et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

    Article  CAS  Google Scholar 

  20. Geng, Y., Lee, N., Choi, Y. J., Cheong, S-W. & Wu, W. Collective magnetism at multiferroic vortex domain walls. Nano. Lett. 12, 6055–6059 (2012).

    Article  CAS  Google Scholar 

  21. Chung, T. K., Carman, G. P. & Mohanchandra, K. P. Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film. Appl. Phys. Lett. 92, 112509 (2008).

    Article  Google Scholar 

  22. Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001).

    Article  Google Scholar 

  23. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).

    Article  CAS  Google Scholar 

  24. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103(R) (2005).

    Article  Google Scholar 

  25. Artyukhin, S., Delaney, K. T., Spaldin, N. A. & Mostovoy, M. Landau theory of topological defects in multiferroic hexagonal manganites. Nature Mater. (2013).

  26. Yen, F. et al. Magnetic phase diagrams of multiferroic hexagonal RMnO3 (R = Er, Yb, Tm, and Ho). J. Mater. Res. 22, 2163–2173 (2007).

    Article  CAS  Google Scholar 

  27. Chae, S. C. et al. Evolution of the domain topology in a ferroelectric. Phys. Rev. Lett. 110, 167601 (2013).

    Article  CAS  Google Scholar 

  28. Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  29. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  30. Wang, W. et al. Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110, 237601 (2013).

    Article  Google Scholar 

  31. Sugie, H., Iwata, N. & Kohn, K. Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu). J. Phys. Soc. Jpn 71, 1558–1564 (2002).

    Article  CAS  Google Scholar 

  32. Seki, S., Ishiwata, S. & Tokura, Y. Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3 . Phys. Rev. B 86, 060403(R) (2012).

    Article  Google Scholar 

  33. Chang, C-Z. et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  Google Scholar 

Download references


We thank D. Vanderbilt, K. Rabe, S. Artyukhin, P. Chandra and P. Coleman for helpful discussions. Research at Rutgers was supported by the US DOE-BES under Award # DE-SC0008147 (PFM and MeFM studies), and by the NSF under award # DMR-1104484 (synthesis and characterization). Y.G. and W.W. were partially supported by the NSF under award # DMR-0844807. A.L.W. was supported by the Cornell Center for Materials Research with funding from NSF MRSEC program, cooperative agreement DMR-1120296. H.D. and C.J.F. was supported by the DOE-BES under Award Number DE-SCOO02334. M.M. was supported by FOM grant 11PR2928 and the Niels Bohr International Academy.

Author information

Authors and Affiliations



W.W. conceived and designed the project. S-W.C. and X.W. grew and annealed h-ErMnO3 crystals and characterized the magnetic properties. Y.G. carried out PFM and MeFM measurements and analysed the data. A.L.W., H.D. and C.J.F. performed first-principles calculations and developed a phenomenological theory of the linear magnetoelectric effect. M.M. performed the phenomenological Landau theory symmetry analysis of the linear magnetoelectric and the anomalous magnetoelectric response. Y.G., C.J.F., M.M. and W.W. wrote the manuscript with input from all authors. Y.G., A.L.W., M.M. and W.W. wrote the Supplementary Information. All authors participated in discussions.

Corresponding author

Correspondence to Weida Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1672 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geng, Y., Das, H., Wysocki, A. et al. Direct visualization of magnetoelectric domains. Nature Mater 13, 163–167 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing