Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A silicon carbide room-temperature single-photon source

Abstract

Over the past few years, single-photon generation has been realized in numerous systems: single molecules1, quantum dots2,3,4, diamond colour centres5 and others6. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics7 and measurement theory8. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing9. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite–vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×106 counts s−1) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices9.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ensemble measurements of defects in electron-irradiated 4H-SiC.
Figure 2: Confocal microscopy of single-defect localization in 4H-SiC.
Figure 3: Photo-stability of single-photon sources in SiC.

References

  1. Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon anti-bunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    Article  Google Scholar 

  2. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  CAS  Google Scholar 

  3. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  CAS  Google Scholar 

  4. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  CAS  Google Scholar 

  5. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  CAS  Google Scholar 

  6. Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nature Commun. 3, 1029 (2012).

    Article  CAS  Google Scholar 

  7. Peruzzo, A., Shadbolt, P., Brunner, N., Popescu, S. & O’Brien, J. L. A quantum delayed-choice experiment. Science 338, 634–637 (2012).

    Article  CAS  Google Scholar 

  8. Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011).

    Article  CAS  Google Scholar 

  9. Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  CAS  Google Scholar 

  10. Yamada, S., Song, B-S., Asano, T. & Noda, S. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett. 99, 201102 (2011).

    Article  Google Scholar 

  11. Madar, R. Materials science: Silicon carbide in contention. Nature 430, 974–975 (2004).

    Article  CAS  Google Scholar 

  12. Nakamur, D. et al. Ultrahigh-quality silicon carbide single crystals. Nature 430, 1009–1012 (2004).

    Article  Google Scholar 

  13. Lu, X., Lee, J. Y., Feng, P. X-L. & Lin, Q. Silicon carbide microdisk resonator. Opt. Lett. 38, 1304–1306 (2013).

    Article  CAS  Google Scholar 

  14. Fan, J. et al. 3C–SiC nanocrystals as fluorescent biological labels. Small 4, 1058–1062 (2008).

    Article  CAS  Google Scholar 

  15. Beke, D. et al. Silicon carbide quantum dots for bioimaging. J. Mater. Res. 28, 205–209 (2013).

    Article  CAS  Google Scholar 

  16. Gali, A. Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory. J. Mater. Res. 27, 897–909 (2012).

    Article  CAS  Google Scholar 

  17. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article  CAS  Google Scholar 

  18. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalow, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  19. Baranov, P. G. et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

    Article  Google Scholar 

  20. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

    Article  Google Scholar 

  21. DiVincenzo, D. Quantum bits: Better than excellent. Nature Mater. 9, 468–469 (2010).

    Article  CAS  Google Scholar 

  22. Aharonovich, I. et al. Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B 81, 121201 (2010).

    Article  Google Scholar 

  23. Aharonovich, I. et al. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009).

    Article  CAS  Google Scholar 

  24. Neu, E. et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    Article  Google Scholar 

  25. Schröder, T., Gädeke, F., Banholzer, M. J. & Benson, O. Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 055017 (2011).

    Article  Google Scholar 

  26. Ates, S. et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Sci. Rep. 3, 1397 (2013).

    Article  Google Scholar 

  27. Steeds, J. W. Photoluminescence study of the carbon antisite-vacancy pair in 4H-and 6H–SiC. Phys. Rev. B 80, 245202 (2009).

    Article  Google Scholar 

  28. Steeds, J. et al. Transmission electron microscope radiation damage of 4H and 6H SiC studied by photoluminescence spectroscopy. Diamond Relat. Mater. 11, 1923–1945 (2002).

    Article  CAS  Google Scholar 

  29. Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H-and 6H–SiC. Phys. Rev. Lett. 108, 226402 (2012).

    Article  Google Scholar 

  30. Bockstedte, M., Mattausch, A. & Pankratov, O. Ab initio study of the annealing of vacancies and interstitials in cubic SiC: Vacancy-interstitial recombination and aggregation of carbon interstitials. Phys. Rev. B 69, 235202 (2004).

    Article  Google Scholar 

  31. Fuchs, F. et al. Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013).

    Article  CAS  Google Scholar 

  32. Umeda, T. et al. Identification of the carbon antisite-vacancy pair in 4H-SiC. Phys. Rev. Lett. 96, 145501 (2006).

    Article  CAS  Google Scholar 

  33. Deák, P., Aradi, B., Frauenheim, T., Janzén, E. & Gali, A. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81, 153203 (2010).

    Article  Google Scholar 

  34. Ivády, V., Gällström, A., Son, N. T., Janzén, E. & Gali, A. Asymmetric split-vacancy defects in SiC polytypes: A combined theoretical and electron spin resonance study. Phys. Rev. Lett. 107, 195501 (2011).

    Article  Google Scholar 

  35. Umeda, T. et al. Identification of positively charged carbon antisite-vacancy pairs in 4H-SiC. Phys. Rev. B 75, 245202 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

S.C. acknowledges partial financial support from the Australian Research Council, Centre of Excellence Engineered Quantum Systems (CE110001013). B.C.J. acknowledges financial support from the Japanese Society for the Promotion of Science (JSPS; Grant-in-aid for Scientific Research, 22.00802) and the Australian Research Council Centre for Quantum Computation and Communication Technology (CE110001027). This study is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Challenging Exploratory Research, 2012, 24656025. A.G. acknowledges the EU FP7 Grant No. 270197 (DIAMANT), the Hungarian OTKA Grant Nos K101819 and K106114 and the support from the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and B.C.J. proposed the idea and the strategy for the experimental design and data analysis and wrote the paper. S.C. performed the optical single-photon characterization experiments. B.C.J. irradiated and annealed the samples and made the low-temperature photoluminescence measurements. N.S. performed some of the low-temperature photoluminescence measurements. S.C. and B.C.J. coordinated the experiments and analysed the data. V.I. and A.G. performed the theoretical model of the centre. S.C., B.C.J. and A.G. contributed to writing the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to S. Castelletto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3242 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castelletto, S., Johnson, B., Ivády, V. et al. A silicon carbide room-temperature single-photon source. Nature Mater 13, 151–156 (2014). https://doi.org/10.1038/nmat3806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing