Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enabling direct H2O2 production through rational electrocatalyst design

Subjects

An Erratum to this article was published on 23 January 2014

A Corrigendum to this article was published on 17 December 2013

This article has been updated

Abstract

Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt–Hg as a promising candidate. Electrochemical measurements on Pt–Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, A g−1 precious metal, for H2O2 production, over the best performing catalysts in the literature.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of different electrocatalysts for H2O2 production from the literature and from the present work.
Figure 2: Theoretical modelling of oxygen reduction to H2O and H2O2.
Figure 3: Experimental characterization of Pt–Hg on extended surfaces.
Figure 4: Experimental characterization of Pt–Hg/C nanoparticles.

Change history

  • 21 November 2013

    In the version of this Article originally published, the middle initials of the penultimate author were missing; the name should have read Ifan E. L. Stephens. In the Author contributions and Additional information sections 'I.S.' should have read 'I.E.L.S.' These errors have now been corrected in the online versions of the Article.

  • 23 December 2013

    In the version of this Article originally published, in Fig. 1, the top two values on the y axis were switched. This error has now been corrected in the online versions of the Article.

References

  1. Perlo, P. et al. Catalysis for Sustainable Energy Production 89–105 (Wiley, 2009).

    Book  Google Scholar 

  2. Armaroli, N. & Balzani, V. The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46, 52–66 (2007).

    CAS  Article  Google Scholar 

  3. Kotrel, S. & Brauninger, S. in Handbook of Heterogeneous Catalysis 2nd edn (eds Ertl, G., Knoezinger, H., Schueth, F. & Weitkamp, J.) 1963 (Wiley, 2008).

    Google Scholar 

  4. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 1999–2013).

  5. Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A 350, 133–149 (2008).

    CAS  Article  Google Scholar 

  6. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    CAS  Article  Google Scholar 

  7. Fukuzumi, S., Yamada, Y. & Karlin, K. D. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim. Acta 82, 493–511 (2012).

    CAS  Article  Google Scholar 

  8. Hâncu, D., Green, J. & Beckman, E. J. H2O2 in CO2/H2O biphasic systems: Green synthesis and epoxidation reactions. Ind. Eng. Chem. Res. 41, 4466–4474 (2002).

    Article  Google Scholar 

  9. Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    CAS  Article  Google Scholar 

  10. Ford, D. C., Nilekar, A. U., Xu, Y. & Mavrikakis, M. Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf. Sci. 604, 1565–1575 (2010).

    CAS  Article  Google Scholar 

  11. Yamanaka, I., Hashimoto, T., Ichihashi, R. & Otsuka, K. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell. Electrochim. Acta 53, 4824–4832 (2008).

    CAS  Article  Google Scholar 

  12. Lobyntseva, E., Kallio, T., Alexeyeva, N., Tammeveski, K. & Kontturi, K. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies. Electrochim. Acta 52, 7262–7269 (2007).

    CAS  Article  Google Scholar 

  13. Jirkovský, J. S. et al. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 Production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    Article  Google Scholar 

  14. Fellinger, T-P., Hasché, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012).

    CAS  Article  Google Scholar 

  15. Gouérec, P. & Savy, M. Oxygen reduction electrocatalysis: Ageing of pyrolyzed cobalt macrocycles dispersed on an active carbon. Electrochim. Acta 44, 2653–2661 (1999).

    Article  Google Scholar 

  16. Bezerra, C. W. B. et al. A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008).

    CAS  Article  Google Scholar 

  17. Schulenburg, H. et al. Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: Structure and stability of active sites. J. Phys. Chem. B 107, 9034–9041 (2003).

    CAS  Article  Google Scholar 

  18. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    CAS  Article  Google Scholar 

  19. Ayers, K. E., Dalton, L. T. & Anderson, E. B. Efficient generation of high energy density fuel from water. ECS Trans. 41, 27–38 (2012).

    CAS  Article  Google Scholar 

  20. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Unifying the 2e– and 4e– reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 3, 2948–2951 (2012).

    CAS  Article  Google Scholar 

  21. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    CAS  Article  Google Scholar 

  22. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    CAS  Article  Google Scholar 

  23. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    CAS  Article  Google Scholar 

  24. Janik, M. J., Taylor, C. D. & Neurock, M. First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J. Electrochem. Soc. 156, B126–B135 (2009) doi:10.1149/1.3008005.

    CAS  Article  Google Scholar 

  25. Tripković, V., Skúlason, E., Siahrostami, S., Nørskov, J. K. & Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 55, 7975–7981 (2010).

    Article  Google Scholar 

  26. Stephens, I. E. L., Bondarenko, A. S., Gronbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    CAS  Article  Google Scholar 

  27. Rossmeisl, J., Karlberg, G. S., Jaramillo, T. & Norskov, J. K. Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 140, 337–346 (2009).

    Article  Google Scholar 

  28. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Article  Google Scholar 

  29. Skulason, E. et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    CAS  Article  Google Scholar 

  30. Hansen, H. A. et al. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 12, 283–290 (2010).

    CAS  Article  Google Scholar 

  31. Maroun, F., Ozanam, F., Magnussen, O. M. & Behm, R. J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 293, 1811–1814 (2001).

    CAS  Article  Google Scholar 

  32. Strmcnik, D. et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature Chem. 2, 880–885 (2010).

    CAS  Article  Google Scholar 

  33. Viswanathan, V. et al. Simulating linear sweep voltammetry from first-principles: Application to electrochemical oxidation of water on Pt(111) and Pt3Ni(111). J. Phys. Chem. C 116, 4698–4704 (2012).

    CAS  Article  Google Scholar 

  34. Siahrostami, S., Bjorketun, M. E., Strasser, P., Greeley, J. & Rossmeisl, J. Tandem cathode for proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 15, 9326–9334 (2013).

    CAS  Article  Google Scholar 

  35. Wu, H. L., Yau, S. & Zei, M. S. Crystalline alloys produced by mercury electrodeposition on Pt(111) electrode at room temperature. Electrochim. Acta 53, 5961–5967 (2008).

    CAS  Article  Google Scholar 

  36. Angerstein-Kozlowska, H., MacDougall, B. & Conway, B. E. Origin of activation effects of acetonitrile and mercury in electrocatalytic oxidation of formic acid. J. Electrochem. Soc. 120, 756–766 (1973).

    CAS  Article  Google Scholar 

  37. Skuílason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Article  Google Scholar 

  38. Paulus, U. A., Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

    CAS  Article  Google Scholar 

  39. Van der Vliet, D. F. et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Mater. 11, 1051–1058 (2012).

    CAS  Article  Google Scholar 

  40. Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Intl Ed. 51, 4641–4643 (2012).

    CAS  Article  Google Scholar 

  41. Wesselmark, M., Wickman, B., Lagergren, C. & Lindbergh, G. Hydrogen oxidation reaction on thin platinum electrodes in the polymer electrolyte fuel cell. Electrochem. Commun. 12, 1585–1588 (2010).

    CAS  Article  Google Scholar 

  42. Wolfschmidt, H., Weingarth, D. & Stimming, U. Enhanced reactivity for hydrogen reactions at Pt nanoislands on Au(111). ChemPhysChem 11, 1533–1541 (2010).

    CAS  Article  Google Scholar 

  43. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  44. Atomic Simulation Environment (ASE), available at https://wiki.fysik.dtu.dk/ase, Center for Atomic Scale Material Design (CAMD), Technical University of Denmark, Lyngby.

  45. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  46. Verdaguer-Casadevall, A., Hernandez-Fernandez, P., Stephens, I. E. L., Chorkendorff, I. & Dahl, S. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum. J. Power Sources 220, 205–210 (2012).

    CAS  Article  Google Scholar 

  47. Alvarez-Rizatti, M. & Jüttner, K. Electrocatalysis of oxygen reduction by UPD of lead on gold single-crystal surfaces. J. Electroanal. Chem. Interfacial Electrochem. 144, 351–363 (1983).

    CAS  Article  Google Scholar 

  48. Jirkovsky, J. S., Halasa, M. & Schiffrin, D. J. Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Phys. Chem. Chem. Phys. 12, 8042–8053 (2010).

    CAS  Article  Google Scholar 

  49. Blizanac, B. B., Ross, P. N. & Markovic, N. M. Oxygen electroreduction on Ag(111): The pH effect. Electrochim. Acta 52, 2264–2271 (2007).

    CAS  Article  Google Scholar 

  50. CRC Handbook of Chemistry and Physics (CRC Press, 1996).

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Danish Ministry of Science’s UNIK initiative, Catalysis for Sustainable Energy and The Danish Council for Strategic Research’s project NACORR (12-132695). M.E-E. acknowledges financial support from EU PF7’s initiative Fuel Cell and Hydrogen Joint Undertaking’s project CathCat (GA 303492). B.W. thanks Formas (project number 219-2011-959) for financial support. The Center for Individual Nanoparticle Functionality is supported by the Danish National Research Foundation (DNRF54).

Author information

Authors and Affiliations

Authors

Contributions

J.R. and S.S. conceived the DFT calculations. S.S. and M.K. performed the DFT calculations. A.V. and I.E.L.S. designed the experiments. A.V. performed the electrochemical experiments, D.D. the TEM, P.M. the XPS and B.W. the EQCM and SEM-EDS. E.A.P. and R.F. prepared the Ag3Pt sample and performed its XRD. S.S., A.V. and I.E.L.S. co-wrote the first draft of the paper. A.V. designed the figures. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ifan E. L. Stephens or Jan Rossmeisl.

Ethics declarations

Competing interests

Patent application EP 13165265.3 ‘Alloy catalyst material’ has been filed.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2340 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nature Mater 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3795

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing