Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes

Abstract

Failure caused by dendrite growth in high-energy-density, rechargeable batteries with lithium metal anodes has prevented their widespread use in applications ranging from consumer electronics to electric vehicles. Efforts to solve the lithium dendrite problem have focused on preventing the growth of protrusions from the anode surface. Synchrotron hard X-ray microtomography experiments on symmetric lithium–polymer–lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface. Furthermore, we observed crystalline impurities, present in the uncycled lithium anodes, at the base of the subsurface dendritic structures. The portion of the dendrite protruding into the electrolyte increases on cycling until it spans the electrolyte thickness, causing a short circuit. Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface structures in the lithium electrode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Evolution of dendrite growth.
Figure 2: Shift of dendrite volume fraction from electrode to electrolyte.
Figure 3: Comparison of 3D reconstructions with SEM.
Figure 4: Crystallites at base of dendrites.

References

  1. 1

    US Department of Energy Multi-Year Program Plan 2011–2015: Vehicle Technologies Program. (2010).

  2. 2

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Yaws, C. L. Yaws’ Handbook of Properties of the Chemical Elements (Knovel, 2011).

  4. 4

    Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Eweka, E., Owen, J. R. & Ritchie, A. Electrolytes and additives for high efficiency lithium cycling. J. Power Sources 65, 247–251 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Kalnaus, S., Sabau, A. S., Tenhaeff, W. E., Dudney, N. J. & Daniel, C. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J. Power Sources 201, 280–287 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Tatsuma, T., Taguchi, M., Iwaku, M., Sotomura, T. & Oyama, N. Inhibition effects of polyacrylonitrile gel electrolytes on lithium dendrite formation. J. Electroanal. Chem. 472, 142–146 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems—A propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Mayers, M. Z., Kaminski, J. W. & Miller, T. F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214–26221 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Gellings, P. J. & Bouwmeester, H. J. M. The CRC Handbook of Solid State Electrochemistry (CRC Press, 1997).

    Google Scholar 

  13. 13

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 334, 928–935 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Brissot, C., Rosso, M., Chazalviel, J. N. & Lascaud, S. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J. Electrochem. Soc. 146, 4393–4400 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Rosso, M. et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51, 5334–5340 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Liu, S. et al. Lithium dendrite formation in Li/poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells. J. Electrochem. Soc. 157, A1092–A1098 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Dolle, M., Sannier, L., Beaudoin, B., Trentin, M. & Tarascon, J. M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid State 5, A286–A289 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Mater. 9, 504–510 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Chandrashekar, S. et al. Li-7 MRI of Li batteries reveals location of microstructural lithium. Nature Mater. 11, 311–315 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Tatsuma, T., Taguchi, M. & Oyama, N. Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation. Electrochim. Acta 46, 1201–1205 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Lopez, C. M., Vaughey, J. T. & Dees, D. W. Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 156, A726–A729 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Yoshimatsu, I., Hirai, T. & Yamaki, J. Lithium electrode morphology during cycling in lithium cells. J. Electrochem. Soc. 135, 2422–2427 (1988).

    CAS  Article  Google Scholar 

  26. 26

    MacDowell, A. A. et al. X-ray micro-tomography at the Advanced Light Source. Proc. SPIE 8506, 850618 (2012).

    Article  Google Scholar 

  27. 27

    Groso, A. et al. Phase contrast tomography: An alternative approach. Appl. Phys. Lett. 88, 214104 (2006).

    Article  Google Scholar 

  28. 28

    Maia, F. R. N. C. et al. Compressive phase contrast tomography. Proc. SPIE 7800, 78000F (2010).

    Article  Google Scholar 

  29. 29

    Lectro Max 100 Product Data Sheet; http://www.fmclithium.com/.

  30. 30

    Frianeza-Kullberg, T. C. & Salmon, D. J. Removal of lithium nitride from lithium metal. US patent 4,781,756 (1988).

  31. 31

    Brissot, C., Rosso, M., Chazalviel, J. N. & Lascaud, S. in Studies in Surface Science and Catalysis Vol. 132 (eds Oyama, N., Iwasawa, Y. & Hironobu, K.) 947–952 (Elsevier, 2001).

    Google Scholar 

  32. 32

    Rosso, M., Chassaing, E., Chazalviel, J. N. & Gobron, T. Onset of current-driven concentration instabilities in thin cell electrodeposition with small inter-electrode distance. Electrochim. Acta 47, 1267–1273 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Rosso, M., Gobron, T., Brissot, C., Chazalviel, J. N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97–98, 804–806 (2001).

    Article  Google Scholar 

  34. 34

    Mullin, S. A., Stone, G. M., Panday, A. & Balsara, N. P. Salt diffusion coefficients in block copolymer electrolytes. J. Electrochem. Soc. 158, A619–A627 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Singh, M. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40, 4578–4585 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Bruce, P. G. & Vincent, C. A. Polymer electrolytes. J. Chem. Soc. Faraday Trans. 89, 3187–3203 (1993).

    CAS  Article  Google Scholar 

  37. 37

    Panday, A. et al. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42, 4632–4637 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Primary financial support for the work was provided by the Electron Microscopy of Soft Matter Program from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02-05CH11231 and the BATT programme from the Vehicle Technologies programme, through the Office of Energy Efficiency and Renewable Energy under US DOE Contract DE-AC02-05CH11231. Hard X-ray microtomography experiments were performed at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. K.J.H. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Affiliations

Authors

Contributions

K.J.H. and D.T.H. prepped samples and performed the experiments. D.Y.P. and A.A.M. aided in synchrotron experimental set-up and discussion of results. K.J.H. and N.P.B. prepared figures and composed the manuscript. N.P.B. directed the work.

Corresponding author

Correspondence to Nitash P. Balsara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 595 kb)

Supplementary Information

Supplementary Movie S1 (SWF 6693 kb)

Supplementary Information

Supplementary Movie S2 (SWF 2583 kb)

Supplementary Information

Supplementary Movie S3 (SWF 1210 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harry, K., Hallinan, D., Parkinson, D. et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature Mater 13, 69–73 (2014). https://doi.org/10.1038/nmat3793

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing