Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water-mediated structuring of bone apatite

Abstract

It is well known that organic molecules from the vertebrate extracellular matrix of calcifying tissues are essential in structuring the apatite mineral. Here, we show that water also plays a structuring role. By using solid-state nuclear magnetic resonance, wide-angle X-ray scattering and cryogenic transmission electron microscopy to characterize the structure and organization of crystalline and biomimetic apatite nanoparticles as well as intact bone samples, we demonstrate that water orients apatite crystals through an amorphous calcium phosphate-like layer that coats the crystalline core of bone apatite. This disordered layer is reminiscent of those found around the crystalline core of calcified biominerals in various natural composite materials in vivo. This work provides an extended local model of bone biomineralization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The ability of bone apatite particles to adsorb water molecules at their surface is mediated by a hydrophilic surface layer.
Figure 2: The behaviour of the disordered surface layer of bone and biomimetic apatite is similar to that of an amorphous calcium phosphate phase on hydration/dehydration.
Figure 3: Chemical composition of the ACP-like layer in apatites.
Figure 4: Orientation of biomimetic HA platelets.
Figure 5: Bone and biomimetic apatites can organize locally in the presence of water.
Figure 6: The extension of the apatite/water interface depends on the presence of a disordered layer.

References

  1. Boskey, A. L. Biomineralization: Conflicts, challenges, and opportunities. J. Cell. Biochem. 72, 83–91 (1998).

    Article  Google Scholar 

  2. Landis, W. J., Song, M. J., Leith, A., McEwen, L. & McEwen, B. F. Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. J. Struct. Biol. 110, 39–54 (1993).

    Article  CAS  Google Scholar 

  3. Wise, E. R. et al. The organic-mineral interface in bone is predominantly polysaccharide. Chem. Mater. 19, 5055–5057 (2007).

    Article  CAS  Google Scholar 

  4. He, G., Dahl, T., Veis, A. & George, A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Mater. 2, 552–558 (2003).

    Article  CAS  Google Scholar 

  5. Huang, S-J., Tsai, Y-L., Lee, Y-L., Lin, C-P. & Chan, J. C. C. Structural model of rat dentin revisited. Chem. Mater. 21, 2583–2585 (2009).

    Article  CAS  Google Scholar 

  6. Nassif, N. et al. Amorphous layer around aragonite platelets in nacre. Proc. Natl Acad. Sci. USA 102, 12653–12655 (2005).

    Article  CAS  Google Scholar 

  7. Wu, Y. et al. Nuclear magnetic resonance spin–spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. 17, 472–480 (2002).

    Article  CAS  Google Scholar 

  8. Nassif, N. et al. Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. Angew. Chem. Int. Ed. 44, 6004–6009 (2005).

    Article  CAS  Google Scholar 

  9. Jäger, C., Welzel, T., Meyer-Zaika, W. & Epple, M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 44, 573–580 (2006).

    Article  CAS  Google Scholar 

  10. Benzerara, K., Menguy, N., Guyot, F., Dominici, C. & Gillet, P. Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite. Proc. Natl Acad. Sci. USA 100, 7438–7442 (2003).

    Article  CAS  Google Scholar 

  11. Glimcher, M. J. in Medical Mineralogy and Geochemistry Vol. 64 (eds Sahai, N. & Schoonen, M. A. A.) 223–282 (Reviews in Mineralogy & Geochemistry, 2006).

    Book  Google Scholar 

  12. Yoder, C. H., Pasteris, J. D., Worcester, K. N. & Schermerhorn, D. V. Structural water in carbonated hydroxylapatite and fluorapatite: Confirmation by solid state H-2 NMR. Calcif. Tissue Int. 90, 60–67 (2012).

    Article  CAS  Google Scholar 

  13. Hodge, A. & Petruska, J. in Aspects of Protein Structure (ed. Ramachandran, G.) 289–300 (Academic, 1963).

    Google Scholar 

  14. Neuman, W. & Bareham, B. Further studies on the nature of fluid compartmentalization in chick calvaria. Calcif. Tissue Int. 17, 249–255 (1975).

    Article  CAS  Google Scholar 

  15. Cowin, S. C. Bone poroelasticity. J. Biomech. 32, 217–238 (1999).

    Article  CAS  Google Scholar 

  16. Wilson, E. E. et al. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J. Bone Miner. Res. 20, 625–634 (2005).

    Article  CAS  Google Scholar 

  17. Jäger, C., Maltsev, S. & Karrasch, A. Progress of structural elucidation of amorphous calcium phosphate (ACP) and hydroxyapatite (HAp): Disorder and surfaces as seen by solid state NMR. Key Eng. Mater. 309–311, 69–72 (2006).

    Article  Google Scholar 

  18. Zhu, P. et al. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 17064–17065 (2009).

    Article  CAS  Google Scholar 

  19. Kolodziejski, W. in New Techniques in Solid-State NMR Vol. 246 (ed. Klinowski, J.) 235–270 (Springer, 2004).

    Google Scholar 

  20. Silvent, J. et al. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization. PLoS ONE 8, e57344 (2013).

    Article  CAS  Google Scholar 

  21. Cho, G., Wu, Y. & Ackerman, J. L. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300, 1123–1127 (2003).

    Article  CAS  Google Scholar 

  22. Maltsev, S., Duer, M. J., Murray, R. C. & Jaeger, C. A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse. J. Mater. Sci. 42, 8804–8810 (2007).

    Article  CAS  Google Scholar 

  23. Mahamid, J. et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl Acad. Sci. USA 107, 6316–6321 (2010).

    Article  CAS  Google Scholar 

  24. Folliet, N. et al. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations. J. Am. Chem. Soc. 133, 16815–16827 (2011).

    Article  CAS  Google Scholar 

  25. Rey, C., Combes, C., Drouet, C., Sfihi, H. & Barroug, A. Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Mater. Sci. Eng, C 27, 198–205 (2007).

    Article  CAS  Google Scholar 

  26. Takemoto, S. et al. Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites. J. Biomed. Mater. Res. A 69A, 544–551 (2004).

    Article  CAS  Google Scholar 

  27. Nassif, N. et al. In vivo inspired conditions to synthesize biomimetic hydroxyapatite. Chem. Mater. 22, 3653–3663 (2010).

    Article  CAS  Google Scholar 

  28. Rhee, S. H. & Tanaka, J. Hydroxyapatite formation on cellulose cloth induced by citric acid. J. Mater. Sci. 11, 449–452 (2000).

    CAS  Google Scholar 

  29. Hu, Y-Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).

    Article  CAS  Google Scholar 

  30. Bertinetti, L. et al. Surface structure, hydration, and cationic sites of nanohydroxyapatite: UHR-TEM, IR, and microgravimetric studies. J. Phys. Chem. C 111, 4027–4035 (2007).

    Article  CAS  Google Scholar 

  31. Ren, F. Z., Leng, Y., Ding, Y. H. & Wang, K. F. Hydrothermal growth of biomimetic carbonated apatite nanoparticles with tunable size, morphology and ultrastructure. CrystEngComm 15, 2137–2146 (2013).

    Article  CAS  Google Scholar 

  32. Landis, W. J., Paine, M. C. & Glimcher, M. J. Electron-microscopic observations of bone tissue prepared anhydrously in organic-solvents. J. Ultrastruct. Res. 59, 1–30 (1977).

    Article  CAS  Google Scholar 

  33. Wang, Y. et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nature Mater. 11, 724–733 (2012).

    Article  CAS  Google Scholar 

  34. Weiner, S., Traub, W. & Wagner, H. D. Lamellar bone: Structure-function relations. J. Struct. Biol. 126, 241–255 (1999).

    Article  CAS  Google Scholar 

  35. Su, X., Sun, K., Cui, F. Z. & Landis, W. J. Organization of apatite crystals in human woven bone. Bone 32, 150–162 (2003).

    Article  CAS  Google Scholar 

  36. Beniash, E. Biominerals-hierarchical nanocomposites: the example of bone. WIRes Nanomed. Nanobiotech. 3, 47–69 (2011).

    Article  CAS  Google Scholar 

  37. Gervais, C. et al. First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): Assignments, orientation of tensors by local field experiments and effect of molecular motion. J. Magn. Reson. 187, 131–140 (2007).

    Article  CAS  Google Scholar 

  38. Dorozhkin, S. V. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials 2, 1975–2045 (2009).

    Article  CAS  Google Scholar 

  39. Grey, C. P. & Vega, A. J. Determination of the quadrupole coupling-constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR. J. Am. Chem. Soc. 117, 8232–8242 (1995).

    Article  CAS  Google Scholar 

  40. Rai, R. K. & Sinha, N. Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J. Phys. Chem. C 115, 14219–14227 (2011).

    Article  CAS  Google Scholar 

  41. Combes, C. & Rey, C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 6, 3362–3378 (2010).

    Article  CAS  Google Scholar 

  42. Rey, C., Combes, C., Drouet, C. & Glimcher, M. J. Bone mineral: update on chemical composition and structure. Osteoporos. Int. 20, 1013–1021 (2009).

    Article  CAS  Google Scholar 

  43. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. New York Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  44. Weiner, S. & Price, P. A. Disaggregation of bone into crystals. Calcif. Tissue Int. 39, 365–375 (1986).

    Article  CAS  Google Scholar 

  45. Smiciklas, I. D., Milonjic, S. K., Pfendt, P. & Raicevic, S. The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep. Purif. Technol. 18, 185–194 (2000).

    Article  CAS  Google Scholar 

  46. Kanazawa, T., Umegaki, T. & Uchiyama, N. Thermal crystallization of amorphous calcium-phosphate to alpha-tricalcium phosphate. J. Chem. Technol. Biotechnol. 32, 399–406 (1982).

    Article  CAS  Google Scholar 

  47. Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids (Academic, 1999).

    Google Scholar 

  48. Bolis, V. et al. Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H2O and CO. Phil. Trans. R. Soc. A 370, 1313–1336 (2012).

    Article  CAS  Google Scholar 

  49. Frasca, P., Harper, R. A. & Katz, J. L. Mineral and collagen fiber orientation in human secondary osteons. J. Dent. Res. 57, 526–533 (1978).

    Article  CAS  Google Scholar 

  50. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4, 612–616 (2005).

    Article  CAS  Google Scholar 

  51. Gupta, H.S. et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746 (2006).

    Article  CAS  Google Scholar 

  52. Nyman, J. S., Ni, Q. W., Nicolella, D. P. & Wang, X. D. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 42, 193–199 (2008).

    Article  CAS  Google Scholar 

  53. Chaplin, M. Opinion — Do we underestimate the importance of water in cell biology? Nature Rev. Mol. Cell Biol. 7, 861–866 (2006).

    Article  CAS  Google Scholar 

  54. Beshah, K., Rey, C., Glimcher, M. J., Schimizu, M. & Griffin, R. G. Solid-state carbon-13 and proton NMR-studies of carbonate-containing calcium phoshates and enamel. J. Solid State Chem. 84, 71–81 (1990).

    Article  CAS  Google Scholar 

  55. Babonneau, F., Bonhomme, C., Hayakawa, S. & Osaka, A. Solid state NMR characterization of nano-crystalline hydroxy-carbonate apatite using 1H-31P-13C triple resonance experiments. Mater. Res. Soc. Symp. Proc. 984 MM06-05 (2006).

Download references

Acknowledgements

We thank IMM Recherche, especially L. Behr, for providing the fresh bone samples, S. Casale for HRTEM observations, A. Anglo and C. Illoul for preparation of bone thin sections for TEM observations, Ö. Sel and C. Boissière for insightful discussions and critical suggestions, A. Délice and C. Paquis for technical assistance, and E. Ruiz-Hitzky for giving us the opportunity to perform dynamic water sorption measurements at the Instituto de Ciencias de Materiales de Madrid (CSIC, Spain). This work was supported by the Agence Nationale de la Recherche (ANR) through the ANR-09-BLAN-0120-01 ‘NanoShap’ program. The French Région Ile de France SESAME program is acknowledged for financial support (700 MHz spectrometer).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and S.V.E. contributed equally to this work. Y.W., S.V.E., F.M.F., M.S., G.L., G.P-A., C.C., T.A. and N.N. performed the research; F.B. looked for financial support for the project; Y.W., S.V.E., F.M.F., S.C., M.S., G.L., L.B., M-M.G-G., F.B., T.A. and N.N. analysed data; S.V.E., F.M.F., S.C., T.A. and N.N. wrote the paper; F.M.F., S.C., T.A. and N.N. designed the research; T.A. and N.N. wrote the project and supervised the work.

Corresponding authors

Correspondence to Thierry Azaïs or Nadine Nassif.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2297 kb)

Supplementary Information

Supplementary Movie S1 (AVI 1425 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Von Euw, S., Fernandes, F. et al. Water-mediated structuring of bone apatite. Nature Mater 12, 1144–1153 (2013). https://doi.org/10.1038/nmat3787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing