Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of additional capacities in metal oxide lithium-ion battery electrodes

Subjects

Abstract

Metal fluorides/oxides (MFx/MxOy) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ PDF analyses of the RuO2/Li system reveal the changes in phase composition following battery discharge.
Figure 2: In situ XAS analyses of the RuO2/Li system reveal the changes in the average oxidation state of ruthenium, phase composition and bond lengths.
Figure 3: Tracking the evolution of different chemical species at different states of charge in the RuO2/Li battery system.
Figure 4: Summary of the reaction pathway, evolution of phase distribution and relevant experimental evidence of the RuO2/Li battery system.

Similar content being viewed by others

References

  1. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y. & Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997).

    Article  CAS  Google Scholar 

  2. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  3. Amatucci, G. G. & Pereira, N. Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128, 243–262 (2007).

    Article  CAS  Google Scholar 

  4. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003).

    Article  CAS  Google Scholar 

  5. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites—high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003).

    Article  CAS  Google Scholar 

  6. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).

    Article  CAS  Google Scholar 

  7. Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).

    Article  CAS  Google Scholar 

  8. Liao, P., MacDonald, B. L., Dunlap, R. A. & Dahn, J. R. Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem. Mater. 20, 454–461 (2008).

    Article  CAS  Google Scholar 

  9. Cabana, J., Monconduit, L., Larcher, D. & Palacin, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    Article  CAS  Google Scholar 

  10. Beaulieu, L. Y., Larcher, D., Dunlap, R. A. & Dahn, J. R. Reaction of Li with grain-boundary atoms in nanostructured compounds. J. Electrochem. Soc. 147, 3206–3212 (2000).

    Article  CAS  Google Scholar 

  11. Laruelle, S. et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149, A627–A634 (2002).

    Article  CAS  Google Scholar 

  12. Jamnik, J. & Maier, J. Nanocrystallinity effects in lithium battery materials— Aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 5, 5215–5220 (2003).

    Article  CAS  Google Scholar 

  13. Maier, J. Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V). Faraday Discuss. 134, 51–66 (2007).

    Article  CAS  Google Scholar 

  14. Zhukovskii, Y. F., Balaya, P., Kotomin, E. A. & Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 96, 058302 (2006).

    Article  Google Scholar 

  15. Zhukovskii, Y. F., Balaya, P., Dolle, M., Kotomin, E. A. & Maier, J. Enhanced lithium storage and chemical diffusion in metal-LiF nanocomposites: Experimental and theoretical results. Phys. Rev. B 76, 235414 (2007).

    Article  Google Scholar 

  16. Ponrouch, A., Taberna, P. L., Simon, P. & Palacin, M. R. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 61, 13–18 (2012).

    Article  CAS  Google Scholar 

  17. Menkin, S., Golodnitsky, D. & Peled, E. Artificial solid–electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochem. Commun. 11, 1789–1791 (2009).

    Article  CAS  Google Scholar 

  18. Peled, E., Golodnitsky, D., Ulus, A. & Yufit, V. Effect of carbon substrate on SEI composition and morphology. Electrochim. Acta 50, 391–395 (2004).

    Article  CAS  Google Scholar 

  19. Eshkenazi, V., Peled, E., Burstein, L. & Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion. 170, 83–91 (2004).

    Article  CAS  Google Scholar 

  20. Ohzuku, T., Sawai, K. & Hirai, T. Topotactic 2-phase reaction of ruthenium dioxide (rutile) in lithium nonaqueous cell. J. Electrochem. Soc. 137, 3004–3010 (1990).

    Article  CAS  Google Scholar 

  21. Munoz-Rojas, D., Casas-Cabanas, M. & Baudrin, E. Effect of particle size and cell parameter mismatch on the lithium insertion/deinsertion processes into RuO2 . Solid State Ion. 181, 536–544 (2010).

    Article  CAS  Google Scholar 

  22. Bekaert, E., Balaya, P., Murugavel, S., Maier, J. & Menetrier, M. Li-6 MAS NMR investigation of electrochemical lithiation of RuO2: Evidence for an interfacial storage mechanism. Chem. Mater. 21, 856–861 (2009).

    Article  CAS  Google Scholar 

  23. Gmitter, A. J. et al. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites. J. Mater. Chem. 20, 4149–4161 (2010).

    Article  CAS  Google Scholar 

  24. Leskes, M. et al. Direct detection of discharge products in lithium–oxygen batteries by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 51, 8560–8563 (2012).

    Article  CAS  Google Scholar 

  25. Mackenzie, K.J.D., Smith, & M. E., Multinuclear Solid-State NMR of Inorganic Materials Ch. 6 (Pergamon, 2002).

    Google Scholar 

  26. Ma, Z. R., Zheng, J. P. & Fu, R. Q. Solid state NMR investigation of hydrous ruthenium oxide. Chem. Phys. Lett. 331, 64–70 (2000).

    Article  CAS  Google Scholar 

  27. Delmer, O. Size and morphology effects on the cell voltage of Li-batteries: Case Study of RuO 2. PhD thesis, Max Planck Institute, (2009).

  28. Zhuang, G. V., Yang, H., Ross, P. N., Xu, K. & Jow, T. R. Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate. Electrochem. Solid State 9, A64–A68 (2006).

    Article  CAS  Google Scholar 

  29. Borkiewicz, O. J. et al. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements. J. Appl. Crystallogr. 45, 1261–1269 (2012).

    Article  CAS  Google Scholar 

  30. Chupas, P. J. et al. Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Crystallogr. 36, 1342–1347 (2003).

    Article  CAS  Google Scholar 

  31. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996).

    Article  Google Scholar 

  32. Qui, X., Thompson, J. W. & Billinge, S. J. L. PDFgetX2: A GUI driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystalogr. 37, 678 (2004).

    Article  Google Scholar 

  33. Farrow, C. L. et al. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Mater. 19, 335219 (2007).

    Article  CAS  Google Scholar 

  34. Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  35. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mater. 21 (2009).

    Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  37. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported as part of the North Eastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001294. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Y-Y.H. acknowledges support from a Newton International Fellowship from the Royal Society and a Marie Curie International Incoming Fellowship (PIIF-GA-2011_299341). We thank A. Van der Ven (University of Michigan) and M. Leskes (University of Cambridge) for constructive discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.P.G. and Y-Y.H. proposed the concepts and designed the experiments. Y-Y.H., Z.L., K-W.N., O.J.B., X.H., J.C., K.M.W., L-S.D. and X.Y. carried out the experiments, C.P.G., Y-Y.H., K-W.N., O.J.B., X.H., J.C., M.T.D., K.W.C., P.J.C., X.Y. and X-Q.Y. performed the analysis. C.P.G. and Y-Y.H. wrote the manuscript with help from all the co-authors.

Corresponding author

Correspondence to Clare P. Grey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YY., Liu, Z., Nam, KW. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nature Mater 12, 1130–1136 (2013). https://doi.org/10.1038/nmat3784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing