Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors

Abstract

Fundamental studies of intrinsic charge transport properties of organic semiconductors are often hindered by charge traps associated with static disorder present even in optimized single-crystal devices. Here, we report a method of surface functionalization using an inert non-conjugated polymer, perfluoropolyether (PFPE), deposited at the surface of organic molecular crystals, which results in accumulation of mobile holes and a ‘trap healing’ effect at the crystal/PFPE interface. As a consequence, a remarkable ultralow-noise, trp-free conduction regime characterized by intrinsic mobility and transport anisotropy emerges in organic single crystals, and Hall effect measurements with an unprecedented signal-to-noise ratio are demonstrated. This general method to convert trap-dominated organic semiconductors to intrinsic systems may enable the determination of intrinsic transport parameters with high accuracy and make Hall effect measurements in molecular crystals ubiquitous.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface charge accumulation in rubrene single crystals with PFPE polymer.
Figure 2: Anisotropic surface conductivity induced by PFPE in molecular crystals.
Figure 3: Trap-healing effect of PFPE revealed in FET measurements.
Figure 4: Hall effect at the surface of rubrene functionalized with PFPE.

Similar content being viewed by others

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Podzorov, V. Organic single crystals: Addressing the fundamentals of organic electronics. MRS Bull. 38, 15–24 (2013).

    Article  Google Scholar 

  3. Gershenson, M. E., Podzorov, V. & Morpurgo, A. F. Electronic transport in single-crystal organic transistors. Rev. Mod. Phys. 78, 973–989 (2006).

    Article  CAS  Google Scholar 

  4. Calhoun, M. F., Hsieh, C. & Podzorov, V. Effect of interfacial shallow traps on polaron transport at the surface of organic semiconductors. Phys. Rev. Lett. 98, 096402 (2007).

    Article  CAS  Google Scholar 

  5. Chen, Y., Lee, B., Fu, D. & Podzorov, V. The origin of a 650 nm photoluminescence band in rubrene. Adv. Mater. 23, 5370–5375 (2011).

    Article  CAS  Google Scholar 

  6. Lang, D. V., Chi, X., Siegrist, T., Sergent, A. M. & Ramirez, A. P. Amorphous-like density of gap states in single-crystal pentacene. Phys. Rev. Lett. 93, 086802 (2004).

    Article  CAS  Google Scholar 

  7. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers 2nd edn (Oxford Univ. Press, 1999).

    Google Scholar 

  8. Najafov, H., Mastrogiovanni, D., Garfunkel, E., Feldman, L. C. & Podzorov, V. Photon-assisted oxygen diffusion and oxygen-related traps in organic semiconductors. Adv. Mater. 23, 981–985 (2011).

    Article  CAS  Google Scholar 

  9. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Khaffaf, S. M. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  10. Hulea, I. N. et al. Tunable Fröhlich polarons in organic single-crystal transistors. Nature Mater. 5, 982–986 (2006).

    Article  CAS  Google Scholar 

  11. Sundar, V. C. et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  CAS  Google Scholar 

  12. Da Silva Filho, D. A., Kim, E-G. & Brédas, J-L. Transport properties in the rubrene crystals: Electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072–1076 (2005).

    Article  CAS  Google Scholar 

  13. Xia, Y., Kalihari, V., Frisbie, C. D., Oh, N. K. & Rogers, J. A. Tetracene air-gap single-crystal field-effect transistors. Appl. Phys. Lett. 90, 162106 (2007).

    Article  Google Scholar 

  14. Reese, C. & Bao, Z. High-resolution measurement of the anisotropy of charge transport in single crystals. Adv. Mater. 19, 4535–4538 (2007).

    Article  CAS  Google Scholar 

  15. Lee, J. Y., Roth, S. & Park, Y. W. Anisotropic field effect mobility in single crystal pentacene. Appl. Phys. Lett. 88, 252106 (2006).

    Article  Google Scholar 

  16. Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  17. Lee, S. S., Loth, M., Anthony, J. & Loo, Y-L. Orientation-independent charge transport in single spherulites from solution-processed organic semiconductors. J. Am. Chem. Soc. 134, 5436–5439 (2012).

    Article  CAS  Google Scholar 

  18. Wen, S. H. et al. First-principle investigation of anisotropic hole mobilities in organic semiconductors. J. Phys. Chem. 113, 8813–8819 (2009).

    Article  CAS  Google Scholar 

  19. Olthof, S. et al. Ultralow doping in organic semiconductors: Evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Article  Google Scholar 

  20. Yi, H. T., Chen, Y., Czelen, K. & Podzorov, V. Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors. Adv. Mater. 23, 5807–5811 (2011).

    Article  CAS  Google Scholar 

  21. Chen, Y. & Podzorov, V. Bias stress effect in ‘air-gap’ organic field-effect transistors. Adv. Mater. 24, 2679–2684 (2012).

    Article  CAS  Google Scholar 

  22. Rivnay, J. et al. Structural origin of gap states in semicrystalline polymers and the implication for charge transport. Phys. Rev. B 83, 121306(R) (2011).

    Article  Google Scholar 

  23. Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    Article  CAS  Google Scholar 

  24. Takeya, J., Tsukagoshi, K., Aoyagi, Y., Takenobu, T. & Iwasa, Y. Hall effect of quasi-hole gas in organic single-crystal transistors. Jpn. J. Appl. Phys. 44, L1393–L1396 (2005).

    Article  CAS  Google Scholar 

  25. Minder, N. A., Ono, S., Chen, Z., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    Article  CAS  Google Scholar 

  26. Chang, J-F. et al. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).

    Article  Google Scholar 

  27. Weissman, M. B. 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988).

    Article  CAS  Google Scholar 

  28. Matsui, H., Hasegawa, T., Tokura, Y., Hiraoka, M. & Yamada, T. Polaron motional narrowing of electron spin resonance in organic field-effect transistors. Phys. Rev. Lett. 100, 126601 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by a DOE BES award under grant no. DE-SC0005464 (ER46763) and NSF-DMR-0843985. We are very grateful to H. Lee and A. L. Briseno for their help with density functional theory calculations. We are also very grateful to E. A. Chandross, E. Galoppini and Y. Cao for useful discussions and to S-Y. Wang for her help with organic single-crystal growth.

Author information

Authors and Affiliations

Authors

Contributions

B.L., Y.C., D.F., H.T.Y., K.C. and H.N. performed crystal growth, device fabrication and measurements. B.L., Y.C. and V.P. designed the experiments and analysed data. V.P. guided the work. Y.C. and V.P. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to V. Podzorov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B., Chen, Y., Fu, D. et al. Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors. Nature Mater 12, 1125–1129 (2013). https://doi.org/10.1038/nmat3781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3781

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing