Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biophysical regulation of epigenetic state and cell reprogramming

Abstract

Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microgroove substrates altered fibroblast morphology and improved iPSC generation.
Figure 2: Microtopography induced histone modifications and replaced VPA and TCP in reprogramming.
Figure 3: Microtopography reduced HDAC activity, downregulated HDAC2 and upregulated WDR5.
Figure 4: Initiation of MET and contractility-dependent histone modifications.
Figure 5: Nanoscale and morphological regulation of histone modifications and cell reprogramming.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  3. Park, I-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  Google Scholar 

  4. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  5. Redmer, T. et al. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 12, 720–726 (2011).

    Article  CAS  Google Scholar 

  6. Li, D. et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol. 191, 631–644 (2010).

    Article  CAS  Google Scholar 

  7. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  Google Scholar 

  8. Feng, B., Ng, J-H., Heng, J-C. D. & Ng, H-H. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4, 301–312 (2009).

    Article  CAS  Google Scholar 

  9. Li, Y. et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21, 196–204 (2011).

    Article  CAS  Google Scholar 

  10. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  11. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnol. 26, 795–797 (2008).

    Article  CAS  Google Scholar 

  12. Zhu, S. et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655 (2010).

    Article  CAS  Google Scholar 

  13. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    Article  CAS  Google Scholar 

  14. Pasque, V., Jullien, J., Miyamoto, K., Halley-Stott, R. P. & Gurdon, J. B. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet. 27, 516–525 (2011).

    Article  CAS  Google Scholar 

  15. Plath, K. & Lowry, W. E. Progress in understanding reprogramming to the induced pluripotent state. Nature Rev. Genet. 12, 253–265 (2011).

    Article  CAS  Google Scholar 

  16. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  CAS  Google Scholar 

  17. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  18. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  Google Scholar 

  19. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  20. Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Mater. 9, 82–88 (2010).

    Article  CAS  Google Scholar 

  21. Engler, A. J., Humbert, P. O., Wehrle-haller, B. & Weaver, V. M. Multiscale modeling of form and function. Science 324, 208–212 (2009).

    Article  CAS  Google Scholar 

  22. DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: Architectural control of mechanotransduction. Nature Rev. 12, 308–319 (2011).

    Article  CAS  Google Scholar 

  23. Patel, S. et al. Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 7, 2122–2128 (2007).

    Article  CAS  Google Scholar 

  24. Thakar, R. G., Ho, F., Huang, N. F., Liepmann, D. & Li, S. Regulation of vascular smooth muscle cells by micropatterning. Biochem. Biophys. Res. Commun. 307, 883–890 (2003).

    Article  CAS  Google Scholar 

  25. Huang, N. F. et al. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 6, 537–542 (2006).

    Article  CAS  Google Scholar 

  26. Park, J. S. et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF- β. Biomaterials 32, 3921–3930 (2011).

    Article  CAS  Google Scholar 

  27. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    Article  CAS  Google Scholar 

  28. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  29. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: A growing role for contractility. Nature Rev. 10, 34–43 (2009).

    Article  CAS  Google Scholar 

  30. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nature Rev. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  31. Poh, Y-C. et al. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nature Commun. 3, 866 (2012).

    Article  Google Scholar 

  32. McMurray, R. J. et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Mater. 10, 637–644 (2011).

    Article  CAS  Google Scholar 

  33. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  Google Scholar 

  34. Li, D. et al. Role of mechanical factors in fate decisions of stem cells. Regen Med. 6, 229–240 (2011).

    Article  Google Scholar 

  35. Chowdhury, F. et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5, e15655 (2010).

    Article  CAS  Google Scholar 

  36. Ji, L., LaPointe, V. L. S., Evans, N. D. & Stevens, M. M. Changes in embryonic stem cell colony morphology and early differentiation markers driven by colloidal crystal topographical cues. Europ. Cells Mater. 23, 135–146 (2012).

    Article  CAS  Google Scholar 

  37. Sommer, C. A. et al. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28, 64–74 (2010).

    CAS  Google Scholar 

  38. Li, Y. et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys. J. 100, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  39. Buganim, Y., Faddah, D. a & Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nature Rev. Genet. 14, 427–439 (2013).

    Article  CAS  Google Scholar 

  40. Tavernier, G., Mlody, B., Demeester, J., Adjaye, J. & De Smedt, S. C. Current methods for inducing pluripotency in somatic cells. Adv. Mater. 25, 2765–2771 (2013).

    Article  CAS  Google Scholar 

  41. Ang, Y-S. et al. WDR5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  Google Scholar 

  42. Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24, 306–319 (2004).

    Article  CAS  Google Scholar 

  43. Wu, M-Z. et al. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol. Cell 43, 811–822 (2011).

    Article  CAS  Google Scholar 

  44. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627–632 (2008).

    Article  CAS  Google Scholar 

  45. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  Google Scholar 

  46. Pang, Z. P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    Article  CAS  Google Scholar 

  47. Karow, M. et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11, 471–476 (2012).

    Article  CAS  Google Scholar 

  48. Thier, M. et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 473–479 (2012).

    Article  CAS  Google Scholar 

  49. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  Google Scholar 

  50. Downing, T. L. et al. Drug-eluting microfibrous patches for the local delivery of rolipram in spinal cord repair. J. Control Release 161, 910–917 (2012).

    Article  CAS  Google Scholar 

  51. Cheng, Q., Komvopoulos, K. & Li, S. Surface chemical patterning for long-term single-cell culture. J. Biomed. Mater. Res. A 96, 507–512 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from the California Institute of Regenerative Medicine (RB3-05232) and the National Institute of Health (EB012240; to S.L.), fellowships from the Ford Foundation and Siebel Scholars Foundation (to T.L.D.), a fellowship from the National Science Foundation GRFP (to J.S.), and the Fulbright-France Commission (to T.H.). The authors would like to thank M. West at the CIRM/QB3 Shared Stem Cell Facility of UC Berkeley, I. Conboy, D. Wang, C. Elabd, T. Yamaguchi, C. W. Huang, I. Grubisic, W. C. Huang, E. Su, A. Chang and J. Zhang for their assistance and fruitful discussions. The pLOVE 302/367 plasmid was provided by the laboratory of R. Blelloch.

Author information

Authors and Affiliations

Authors

Contributions

S.L., T.L.D., J.S., C.M., T.H. and D.V.S. designed the experiments. T.L.D., J.S., C.M., T.H., F.Y., J.C., A.F. and S.P. carried out experiments and analysed the data. S.L., T.L.D. and J.S. wrote the manuscript.

Corresponding author

Correspondence to Song Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downing, T., Soto, J., Morez, C. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nature Mater 12, 1154–1162 (2013). https://doi.org/10.1038/nmat3777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3777

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research