Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanisms of cellular mechanosensing

Abstract

Mechanical forces direct a host of cellular and tissue processes. Although much emphasis has been placed on cell-adhesion complexes as force sensors, the forces must nevertheless be transmitted through the cortical cytoskeleton. Yet how the actin cortex senses and transmits forces and how cytoskeletal proteins interact in response to the forces is poorly understood. Here, by combining molecular and mechanical experimental perturbations with theoretical multiscale modelling, we decipher cortical mechanosensing from molecular to cellular scales. We show that forces are shared between myosin II and different actin crosslinkers, with myosin having potentiating or inhibitory effects on certain crosslinkers. Different types of cell deformation elicit distinct responses, with myosin and α-actinin responding to dilation, and filamin mainly reacting to shear. Our observations show that the accumulation kinetics of each protein may be explained by its molecular mechanisms, and that protein accumulation and the cell’s viscoelastic state can explain cell contraction against mechanical load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanosensitivity of myosin II in interphase Dictyostelium cells.
Figure 2: The responses of different actin-associated proteins to aspiration pressure.
Figure 3: Deformations and corresponding protein accumulation during micropipette aspiration.
Figure 4: Retraction of cells due to the accumulation of cytoskeletal proteins.

Similar content being viewed by others

References

  1. LeDuc, P. R. & Robinson, D. N. Using lessons from cellular and molecular structures for future materials. Adv. Mater. 19, 3761–3770 (2007).

    CAS  Google Scholar 

  2. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  Google Scholar 

  3. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    CAS  Google Scholar 

  4. Tamada, M., Sheetz, M. P. & Sawada, Y. Activation of signaling cascade by cytoskeleton stretch. Dev. Cell 7, 709–718 (2004).

    CAS  Google Scholar 

  5. Chowdhury, F. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Mater. 9, 82–88 (2010).

    CAS  Google Scholar 

  6. Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. & Stossel, T. P. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478, 260–263 (2011).

    CAS  Google Scholar 

  7. Effler, J. C. et al. Mitosis-specific mechanosensing and contractile protein redistribution control cell shape. Curr. Biol. 16, 1962–1967 (2006).

    CAS  Google Scholar 

  8. Kee, Y-S. et al. A mechanosensory system governs myosin II accumulation in dividing cells. Mol. Biol. Cell 23, 1510–1523 (2012).

    CAS  Google Scholar 

  9. Johnson, C. P., Tang, H-Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    CAS  Google Scholar 

  10. DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: Architectural control of mechanotransduction. Nature Rev. Mol. Cell Biol. 12, 308–319 (2011).

    CAS  Google Scholar 

  11. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  12. Raab, M. et al. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199, 669–683 (2012).

    CAS  Google Scholar 

  13. Köhler, S., Schaller, V. & Bausch, A. R. Structure formation in active networks. Nature Mater. 10, 462–468 (2011).

    Google Scholar 

  14. Del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    CAS  Google Scholar 

  15. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  Google Scholar 

  16. Shin, J. H., Gardel, M. L., Mahadevan, L., Matsudaira, P. & Weitz, D. A. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. Proc. Natl Acad. Sci. USA 101, 9636–9641 (2004).

    CAS  Google Scholar 

  17. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    CAS  Google Scholar 

  18. Koenderink, G. H. et al. An active biopolymer network controlled by molecular motors. Proc. Natl Acad. Sci. USA 106, 15192–15197 (2009).

    CAS  Google Scholar 

  19. Wagner, B., Tharmann, R., Haase, I., Fischer, M. & Bausch, A. R. Cytoskeletal polymer networks: The molecular structure of cross-linkers determines macroscopic properties. Proc. Natl Acad. Sci. USA 103, 13974–13978 (2006).

    CAS  Google Scholar 

  20. Schmoller, K. M., Lieleg, O. & Bausch, A. R. Cross-linking molecules modify composite actin networks independently. Phys. Rev. Lett. 101, 118102 (2008).

    CAS  Google Scholar 

  21. Murrell, M. et al. Spreading dynamics of biomimetic actin cortices. Biophys. J. 100, 1400–1409 (2011).

    CAS  Google Scholar 

  22. He, L., Wang, X., Tang, H. L. & Montell, D. J. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nature Cell. Biol. 12, 1133–1142 (2010).

    CAS  Google Scholar 

  23. Solon, J., Kaya-Çopur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    Google Scholar 

  24. Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nature Mater. 2, 715–725 (2003).

    CAS  Google Scholar 

  25. Luo, T. et al. Understanding the cooperative interaction between myosin II and actin cross-linkers mediated by actin filaments during mechanosensation. Biophys. J. 102, 238–247 (2012).

    CAS  Google Scholar 

  26. Ren, Y. et al. Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr. Biol. 19, 1421–1428 (2009).

    CAS  Google Scholar 

  27. Uyeda, T. Q. P., Iwadate, Y., Umeki, N., Nagasaki, A. & Yumura, S. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS ONE 6, e26200 (2011).

    CAS  Google Scholar 

  28. Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    CAS  Google Scholar 

  29. Discher, D. E. & Mohandas, N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys. J. 71, 1680–1694 (1996).

    CAS  Google Scholar 

  30. Evans, E. Probing the relation between force-life-time-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    CAS  Google Scholar 

  31. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    CAS  Google Scholar 

  32. Veigel, C., Molloy, J. E., Schmitz, S. & Kendrick-Jones, J. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nature Cell Biol. 5, 980–986 (2003).

    CAS  Google Scholar 

  33. Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    CAS  Google Scholar 

  34. Uyeda, T. Q., Abramson, P. D. & Spudich, J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl Acad. Sci. USA 93, 4459–4464 (1996).

    CAS  Google Scholar 

  35. Robinson, D. N., Kee, Y. S., Luo, T. & Surcel, A. in Comprehensive Biophysics (ed. Edward, H. E.) 48–72 (Elsevier, 2012).

    Google Scholar 

  36. Seifert, U. Rupture of multiple parallel molecular bonds under dynamic loading. Phys. Rev. Lett. 84, 2750–2753 (2000).

    CAS  Google Scholar 

  37. Erdmann, T. & Schwarz, U. S. Stability of adhesion clusters under constant force. Phys. Rev. Lett. 92, 108102 (2004).

    CAS  Google Scholar 

  38. Girard, K. D., Chaney, C., Delannoy, M., Kuo, S. C. & Robinson, D. N. Dynacortin contributes to cortical viscoelasticity and helps define the shape changes of cytokinesis. EMBO J. 23, 1536–1546 (2004).

    CAS  Google Scholar 

  39. Gerisch, G. et al. Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys. J. 87, 3493–3503 (2004).

    CAS  Google Scholar 

  40. Robinson, D. N. & Spudich, J. A. Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J. Cell Biol. 150, 823–838 (2000).

    CAS  Google Scholar 

  41. Nakamura, F., Osborn, T. M., Hartemink, C. A., Hartwig, J. H. & Stossel, T. P. Structural basis of filamin A functions. J. Cell. Biol. 179, 1011–1025 (2007).

    CAS  Google Scholar 

  42. Meyer, R. K. & Aebi, U. Bundling of actin filaments by alpha-actinin depends on its molecular length. J. Cell Biol. 110, 2013–2024 (1990).

    CAS  Google Scholar 

  43. Hock, R. S. & Condeelis, J. S. Isolation of a 240-kilodalton actin-binding protein from Dictyostelium discoideum. J. Biol. Chem. 262, 394–400 (1987).

    CAS  Google Scholar 

  44. Ferrer, J. M. et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl Acad. Sci. USA 105, 9221–9226 (2008).

    CAS  Google Scholar 

  45. Guo, B. & Guilford, W. H. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl Acad. Sci. USA. 103, 9844–9849 (2006).

    CAS  Google Scholar 

  46. Pereverzev, Y. V., Prezhdo, O. V., Forero, M., Sokurenko, E. V. & Thomas, W. E. The two-pathway model for the catch-slip transition in biological adhesion. Biophys. J. 89, 1446–1454 (2005).

    CAS  Google Scholar 

  47. Evans, E., Leung, A., Heinrich, V. & Zhu, C. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl Acad. Sci. USA 101, 11282–11286 (2004).

    Google Scholar 

  48. Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. & Winder, S. J. Functional plasticity of CH domains. FEBS Lett. 513, 98–106 (2002).

    CAS  Google Scholar 

  49. Yao, N. Y. et al. Stress-enhanced gelation: A dynamic nonlinearity of elasticity. Phys. Rev. Lett. 110, 018103 (2013).

    Google Scholar 

  50. Maugis, B. et al. Dynamic instability of the intracellular pressure drives bleb-based motility. J. Cell Sci. 123, 3884–3892 (2010).

    CAS  Google Scholar 

  51. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    CAS  Google Scholar 

  52. Friedrich, B. M., Friedrich, E. F., Gov, N. S. & Safran, S. A. Sacromeric pattern formation by actin cluster coalescence. PLoS Comput. Biol. 8, e1002544 (2012).

    CAS  Google Scholar 

  53. Dickinson, D. J., Robinson, D. N., Nelson, W. J. & Weis, W. I. α-Catenin and IQGAP regulate myosin localization to control epithelial tube morphology in Dictyostelium morphogenesis. Dev. Cell 23, 533–546 (2012).

    CAS  Google Scholar 

  54. Chen, C-L., Wang, Y., Sesaki, H. & Iijima, M. Myosin I Links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci. Signal. 5, ra10 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank P. Devreotes, M. Iijima and their laboratory members, and members of the Robinson laboratory for reagents and discussions. We thank T. Inoue, R. Rock, R. Jensen and Robinson laboratory members for comments on the manuscript. We thank dictyBase (www.dictybase.org), D. Knecht, M. Titus, G. Gerisch, T. Egelhoff and P. Steimle for reagents. We thank V. Srivastava for help with confocal imaging. This work is supported by the National Institutes of Health grants GM066817 (to D.N.R.) and GM086704 (to D.N.R. and P.A.I.).

Author information

Authors and Affiliations

Authors

Contributions

T.L. and D.N.R. conceived, designed and wrote the paper. T.L. performed the experiments and analysed the data. T.L. conducted the coarse-grained molecular simulations. K.M. and P.A.I. carried out the continuum simulations. T.L., K.M., P.A.I. and D.N.R. proposed the strain-specific molecular mechanisms for different cytoskeletal proteins and the one-dimensional retraction model. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Tianzhi Luo or Douglas N. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5044 kb)

Supplementary Information

Supplementary Movie S1 (MPG 206 kb)

Supplementary Information

Supplementary Movie S2 (MPG 206 kb)

Supplementary Information

Supplementary Movie S3 (MPG 182 kb)

Supplementary Information

Supplementary Movie S4 (AVI 171 kb)

Supplementary Information

Supplementary Movie S5 (AVI 763 kb)

Supplementary Information

Supplementary Movie S6 (AVI 966 kb)

Supplementary Information

Supplementary Movie S7 (AVI 768 kb)

Supplementary Information

Supplementary Movie S8 (AVI 1012 kb)

Supplementary Information

Supplementary Movie S9 (AVI 990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, T., Mohan, K., Iglesias, P. et al. Molecular mechanisms of cellular mechanosensing. Nature Mater 12, 1064–1071 (2013). https://doi.org/10.1038/nmat3772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing