Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macroscale delivery systems for molecular and cellular payloads

Abstract

Macroscale drug delivery (MDD) devices are engineered to exert spatiotemporal control over the presentation of a wide range of bioactive agents, including small molecules, proteins and cells. In contrast to systemically delivered drugs, MDD systems act as a depot of drug localized to the treatment site, which can increase drug effectiveness while reducing side effects and confer protection to labile drugs. In this Review, we highlight the key advantages of MDD systems, describe their mechanisms of spatiotemporal control and provide guidelines for the selection of carrier materials. We also discuss the combination of MDD technologies with classic medical devices to create multifunctional MDD devices that improve integration with host tissue, and the use of MDD technology in tissue-engineering strategies to direct cell behaviour. As our ever-expanding knowledge of human biology and disease provides new therapeutic targets that require precise control over their application, the importance of MDD devices in medicine is expected to increase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enteral/parenteral administration compared with MDD.
Figure 2: Devices exemplifying the different release mechanisms.
Figure 3: Control exerted by drug-delivery devices can be mathematically modelled using the generalized mass-balance equation.
Figure 4: Externally triggered MDD systems control the instantaneous release rate in response to energy transmitted into the system.
Figure 5: Examples of multifunctional MDD materials.
Figure 6: Macroscale drug-delivery technologies play a central role in many tissue-engineering devices, as they deliver factors that direct cell behaviour in various strategies.

Similar content being viewed by others

References

  1. Dang, J. M. & Leong, K. W. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev. 58, 487–499 (2006).

    Article  CAS  Google Scholar 

  2. Folkman, J., Long, D. M. & Rosenbaum, R. Silicone rubber: A new diffusion property useful for general anesthesia. Science 154, 148–149 (1966).

    Article  CAS  Google Scholar 

  3. Hoffman, A. S. The origins and evolution of 'controlled' drug delivery systems. J. Control. Release 132, 153–163 (2008).

    Article  CAS  Google Scholar 

  4. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  CAS  Google Scholar 

  5. Kanasty, R., Dorkin, R. J., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nature Mater. 12, 967–977 (2013).

    Article  CAS  Google Scholar 

  6. Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nature Mater. 12, 978–990 (2013).

    Article  CAS  Google Scholar 

  7. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  8. Roseman, T. J. Release of steroids from a silicone polymer. J. Pharm. Sci. 61, 46–50 (1972).

    Article  CAS  Google Scholar 

  9. Pitt, C. G., Gratzl, M. M., Jeffcoat, A. R., Zweidinger, R. & Schindler, A. Sustained drug delivery systems II: Factors affecting release rates from poly(ɛ-caprolactone) and related biodegradable polyesters. J. Pharm. Sci. 68, 1534–1538 (1979).

    Article  CAS  Google Scholar 

  10. Langer, R. Polymeric delivery systems for controlled drug release. Chem. Eng. Comm. 6, 1–48 (1980).

    Article  CAS  Google Scholar 

  11. Augst, A., Kong, H. & Mooney, D. Alginate hydrogels as biomaterials. Macromol. Biosci. 6, 623–633 (2006).

    Article  CAS  Google Scholar 

  12. Young, S., Wong, M., Tabata, Y. & Mikos, A. G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release 109, 256–274 (2005).

    Article  CAS  Google Scholar 

  13. Bhattarai, N., Gunn, J. & Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62, 83–99 (2010).

    Article  CAS  Google Scholar 

  14. Janmey, P. A., Winer, J. P. & Weisel, J. W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface 6, 1–10 (2009).

    Article  CAS  Google Scholar 

  15. Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. & Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999).

    Article  CAS  Google Scholar 

  16. Tanaka, H., Matsumura, M. & Veliky, I. A. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng. 26, 53–58 (1984).

    Article  CAS  Google Scholar 

  17. Lin, C-C. & Metters, A. T. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006).

    Article  CAS  Google Scholar 

  18. Am Ende, M. T. & Peppas, N. A. Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. I. Polymer characterization. J. Appl. Polym. Sci. 59, 673–685 (1996).

    Article  CAS  Google Scholar 

  19. Am Ende, M. T. & Peppas, N. A. Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. II. Diffusion and release studies. J. Control. Release 48, 47–56 (1997).

    Article  CAS  Google Scholar 

  20. Silva, A. K. A., Richard, C., Bessodes, M., Scherman, D. & Merten, O-W. Growth factor delivery approaches in hydrogels. Biomacromolecules 10, 9–18 (2009).

    Article  CAS  Google Scholar 

  21. Peppas, N. A., Bures, P., Leobandung, W. & Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000).

    Article  CAS  Google Scholar 

  22. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  23. Lee, K., Silva, E. A. & Mooney, D. J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J. R. Soc. Interface 8, 153–170 (2011).

    Article  CAS  Google Scholar 

  24. Gupta, P., Vermani, K. & Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002).

    Article  CAS  Google Scholar 

  25. Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer 49, 1993–2007 (2008).

    Article  CAS  Google Scholar 

  26. Lu, S. & Anseth, K. S. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Control. Release 57, 291–300 (1999).

    Article  CAS  Google Scholar 

  27. Galaev, I. Y. & Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 17, 335–340 (1999).

    Article  CAS  Google Scholar 

  28. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).

    Article  CAS  Google Scholar 

  29. Zhang, J. & Peppas, N. A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33, 102–107 (2000).

    Article  CAS  Google Scholar 

  30. Wang, N. X. & von Recum, H. A. Affinity-based drug delivery. Macromol. Biosci. 11, 321–332 (2011).

    Article  CAS  Google Scholar 

  31. Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl Acad. Sci. USA 107, 3287–3292 (2010).

    Article  CAS  Google Scholar 

  32. Pike, D. B. et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27, 5242–5251 (2006).

    Article  CAS  Google Scholar 

  33. Thatiparti, T. R., Shoffstall, A. J. & von Recum, H. A. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials 31, 2335–2347 (2010).

    Article  CAS  Google Scholar 

  34. Conrad, H. E. Heparin-Binding Proteins (Academic, 1997).

    Google Scholar 

  35. Silva, E. A. & Mooney, D. J. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31, 1235–1241 (2010).

    Article  CAS  Google Scholar 

  36. Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29, 3260–3268 (2008).

    Article  CAS  Google Scholar 

  37. Stockwell, A. F., Davis, S. S. & Walker, S. E. In vitro evaluation of alginate gel systems as sustained release drug delivery systems. J. Control. Release 3, 167–175 (1986).

    Article  CAS  Google Scholar 

  38. Vlatakis, G., Andersson, L. I., Müller, R. & Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 361, 645–647 (1993).

    Article  CAS  Google Scholar 

  39. Hiratani, H., Mizutani, Y. & Alvarez-Lorenzo, C. Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol. Biosci. 5, 728–733 (2005).

    Article  CAS  Google Scholar 

  40. Alvarez-Lorenzo, C. & Concheiro, A. Molecularly imprinted polymers for drug delivery. J. Chromatogr. B 804, 231–245 (2004).

    Article  CAS  Google Scholar 

  41. Rachkov, A. & Minoura, N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta 1544, 255–266 (2001).

    Article  CAS  Google Scholar 

  42. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).

    Article  CAS  Google Scholar 

  43. Ishihara, M. et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J. Biomed. Mater. Res. A 64, 551–559 (2003).

    Article  CAS  Google Scholar 

  44. Wood, K. C., Chuang, H. F., Batten, R. D., Lynn, D. M. & Hammond, P. T. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proc. Natl Acad. Sci. USA 103, 10207–10212 (2006).

    Article  CAS  Google Scholar 

  45. Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).

    Article  CAS  Google Scholar 

  46. Macdonald, M. L. et al. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32, 1446–1453 (2011).

    Article  CAS  Google Scholar 

  47. Leong, K. W., Brott, B. C. & Langer, R. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J. Biomed. Mater. Res. 19, 941–955 (1985).

    Article  CAS  Google Scholar 

  48. Wood, K. C. et al. Electroactive controlled release thin films. Proc. Natl Acad. Sci. USA 105, 2280–2285 (2008).

    Article  CAS  Google Scholar 

  49. Kost, J., Leong, K. & Langer, R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc. Natl Acad. Sci. USA 86, 7663–7666 (1989).

    Article  CAS  Google Scholar 

  50. Liu, T-Y., Hu, S-H., Liu, T-Y., Liu, D-M. & Chen, S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22, 5974–5978 (2006).

    Article  CAS  Google Scholar 

  51. Santini, J. T., Cima, M. J. & Langer, R. A controlled-release microchip. Nature 397, 335–338 (1999).

    Article  CAS  Google Scholar 

  52. Pitt, W. G., Husseini, G. A. & Staples, B. J. Ultrasonic drug delivery: A general review. Expert Opin. Drug Deliv. 1, 37–56 (2004).

    Article  CAS  Google Scholar 

  53. Zhao, X. et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl Acad. Sci. USA 108, 67–72 (2011).

    Article  CAS  Google Scholar 

  54. Murdan, S. Electro-responsive drug delivery from hydrogels. J. Control. Release 92, 1–17 (2003).

    Article  CAS  Google Scholar 

  55. Sawahata, K., Hara, M., Yasunaga, H. & Osada, Y. Electrically controlled drug delivery system using polyelectrolyte gels. J. Control. Release 14, 253–262 (1990).

    Article  CAS  Google Scholar 

  56. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra21 (2012).

    Article  CAS  Google Scholar 

  57. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  58. Kuhl, P. R. & Griffith-Cima, L. G. Tethered epidermal growth factor as a paradigm for growth factor–induced stimulation from the solid phase. Nature Med. 2, 1022–1027 (1996).

    Article  CAS  Google Scholar 

  59. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22, 439–444 (2001).

    Article  CAS  Google Scholar 

  60. Liu, H-W., Chen, C-H., Tsai, C-L., Lin, I-H. & Hsiue, G-H. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Tissue Eng. 13, 1113–1124 (2007).

    Article  CAS  Google Scholar 

  61. Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem. 10, 75–81 (1999).

    Article  CAS  Google Scholar 

  62. Hubbell, J. A. Bioactive biomaterials. Curr. Opin. Biotechnol. 10, 123–129 (1999).

    Article  CAS  Google Scholar 

  63. Ito, Y. Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter 4, 46–56 (2008).

    Article  CAS  Google Scholar 

  64. Sakiyama-Elbert, S. E., Panitch, A. & Hubbell, J. A. Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J. 15, 1300–1302 (2001).

    Article  CAS  Google Scholar 

  65. Schmoekel, H. G. et al. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol. Bioeng. 89, 253–262 (2005).

    Article  CAS  Google Scholar 

  66. BCC Research Advanced Drug Delivery Systems: Technologies and Global Markets (2011); http://www.bccresearch.com

  67. Markets and Markets Global Biomaterial Market (2010–2015) (2011); http://www.marketsandmarkets.com

  68. Centers for Disease Control and Prevention (CDC) Number of All-listed Procedures for Discharges from Short-Stay Hospitals, by Procedure Category and Sex: United States, 2010. (2011); available via http://go.nature.com/Xu3rNU

  69. Moses, J. W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New Engl. J. Med. 349, 1315–1323 (2003).

    Article  CAS  Google Scholar 

  70. Stone, G. W. et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. New Engl. J. Med. 350, 221–231 (2004).

    Article  CAS  Google Scholar 

  71. Hwang, C. W., Wu, D. & Edelman, E. R. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104, 600–605 (2001).

    Article  CAS  Google Scholar 

  72. Burt, H. M. & Hunter, W. L. Drug-eluting stents: A multidisciplinary success story. Adv. Drug Deliv. Rev. 58, 350–357 (2006).

    Article  CAS  Google Scholar 

  73. Stefanini, G. G. et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet 378, 1940–1948 (2011).

    Article  CAS  Google Scholar 

  74. Byrne, R. A. et al. Biodegradable polymer versus permanent polymer drug-eluting stents and everolimus- versus sirolimus-eluting stents in patients with coronary artery disease: 3-year outcomes from a randomized clinical trial. J. Am. Coll. Cardiol. 58, 1325–1331 (2011).

    Article  Google Scholar 

  75. Joner, M. et al. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48, 193–202 (2006).

    Article  Google Scholar 

  76. Dudek, D. et al. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention 7, 1060–1061 (2012).

    Article  Google Scholar 

  77. Wieneke, H. et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter Cardiovasc. Interv. 60, 399–407 (2003).

    Article  Google Scholar 

  78. Kollum, M. et al. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter Cardiovasc. Interv. 64, 85–90 (2005).

    Article  Google Scholar 

  79. Tang, C. et al. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J. Vasc. Surg. 53, 461–471 (2011).

    Article  Google Scholar 

  80. Boden, S. D., Zdeblick, T. A., Sandhu, H. S. & Heim, S. E. The use of rhBMP-2 in interbody fusion cages: Definitive evidence of osteoinduction in humans. A preliminary report. Spine 25, 376–381 (2000).

    Article  CAS  Google Scholar 

  81. Govender, S. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: A prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Joint Surg. Am. 84, 2123–2134 (2002).

    Article  Google Scholar 

  82. McKay, W. F., Peckham, S. M. & Badura, J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int. Orthop. 31, 729–734 (2007).

    Article  Google Scholar 

  83. White, A. P. et al. Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int. Orthop. 31, 735–741 (2007).

    Article  Google Scholar 

  84. Carragee, E. J., Hurwitz, E. L. & Weiner, B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J. 11, 471–491 (2011).

    Article  Google Scholar 

  85. Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35, 562–569 (2004).

    Article  CAS  Google Scholar 

  86. Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A. & Kobayashi, H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J. Control. Release 117, 380–386 (2007).

    Article  CAS  Google Scholar 

  87. Yamamoto, M., Takahashi, Y. & Tabata, Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24, 4375–4383 (2003).

    Article  CAS  Google Scholar 

  88. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 641, 33–72 (1952).

    Google Scholar 

  89. Yuen, W. W., Du, N. R., Chan, C. H., Silva, E. A. & Mooney, D. J. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl Acad. Sci. USA 107, 17933–17938 (2010).

    Article  CAS  Google Scholar 

  90. Bragdon, C. R., Jasty, M., Greene, M., Rubash, H. E. & Harris, W. H. Biologic fixation of total hip implants. Insights gained from a series of canine studies. J. Bone Joint Surg. Am. 86-A Suppl 2, 105–117 (2004).

    Article  Google Scholar 

  91. Simion, M. et al. Vertical ridge augmentation using an equine block infused with recombinant human platelet-derived growth factor-BB: A histologic study in a canine model. Int. J. Periodont. Restor. Dent. 29, 245–255 (2009).

    Google Scholar 

  92. Simion, M., Rocchietta, I., Kim, D., Nevins, M. & Fiorellini, J. Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human platelet-derived growth factor-BB: A histologic study in a dog model. Int. J. Periodont. Restor. Dent. 26, 415–423 (2006).

    Google Scholar 

  93. Jaklenec, A., Stamp, A., Deweerd, E., Sherwin, A. & Langer, R. Progress in the tissue engineering and stem cell industry: “Are we there yet?” Tissue Eng. B Rev. 18, 155–166 (2012).

    Article  Google Scholar 

  94. Langer, R. & Vacanti, J. Tissue engineering. Science 260, 920–926 (1993).

    Article  CAS  Google Scholar 

  95. Mooney, D. J. & Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2, 205–213 (2008).

    Article  CAS  Google Scholar 

  96. Hofmann, M. et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111, 2198–2202 (2005).

    Article  Google Scholar 

  97. Toma, C. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  Google Scholar 

  98. Fisher, R. A. & Strom, S. C. Human hepatocyte transplantation: Worldwide results. Transplantation 82, 441–449 (2006).

    Article  Google Scholar 

  99. Kim, B. S., Baez, C. E. & Atala, A. Biomaterials for tissue engineering. World J. Urol. 18, 2–9 (2000).

    Article  CAS  Google Scholar 

  100. Malafaya, P. B., Silva, G. A. & Reis, R. L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59, 207–233 (2007).

    Article  CAS  Google Scholar 

  101. Sittinger, M., Hutmacher, D. W. & Risbud, M. V. Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol. 15, 411–418 (2004).

    Article  CAS  Google Scholar 

  102. Chastain, S. R., Kundu, A. K., Dhar, S., Calvert, J. W. & Putnam, A. J. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. 78, 73–85 (2006).

    Article  CAS  Google Scholar 

  103. Cooper, M. L. et al. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12, 243–248 (1991).

    Article  CAS  Google Scholar 

  104. Mooney, D. J. et al. Biodegradable sponges for hepatocyte transplantation. J. Biomed. Mater. Res. 29, 959–965 (1995).

    Article  CAS  Google Scholar 

  105. Cao, Y., Vacanti, J. P., Paige, K. T., Upton, J. & Vacanti, C. A. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast. Reconstr. Surg. 100, 297–302 (1997).

    Article  CAS  Google Scholar 

  106. Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J. Am. Chem. Soc. 115, 11010–11011 (1993).

    Article  CAS  Google Scholar 

  107. Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 31–31 (2003).

    Article  CAS  Google Scholar 

  108. Smetana, K. Cell biology of hydrogels. Biomaterials 14, 1046–1050 (1993).

    Article  CAS  Google Scholar 

  109. Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    Article  CAS  Google Scholar 

  110. Alsberg, E. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).

    Article  CAS  Google Scholar 

  111. Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T. & Mooney, D. J. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80, 2025–2029 (2001).

    Article  CAS  Google Scholar 

  112. Harris, L., Kim, B. & Mooney, D. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42, 396–402 (1998).

    Article  CAS  Google Scholar 

  113. Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P. & Langer, R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417–1422 (1996).

    Article  CAS  Google Scholar 

  114. O'Brien, F. J., Harley, B. A., Yannas, I. V. & Gibson, L. J. The effect of pore size on cell adhesion in collagen–GAG scaffolds. Biomaterials 26, 433–441 (2005).

    Article  CAS  Google Scholar 

  115. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P. & Langer, R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330 (1993).

    Article  CAS  Google Scholar 

  116. Mikos, A. G. et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27, 183–189 (1993).

    Article  CAS  Google Scholar 

  117. Giordano, R. A. et al. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Edn 8, 63–75 (1997).

    Article  Google Scholar 

  118. Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R. R. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157–161 (2003).

    Article  CAS  Google Scholar 

  119. Compton, C. C., Butler, C. E., Yannas, I. V., Warland, G. & Orgill, D. P. Organized skin structure is regenerated in vivo from collagen–GAG Matrices seeded with autologous keratinocytes. J. Investig. Dermatol. 110, 908–916 (1998).

    Article  CAS  Google Scholar 

  120. Atala, A., Oberpenning, F., Meng, J. & Yoo, J. J. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nature Biotechnol. 17, 149–155 (1999).

    Article  CAS  Google Scholar 

  121. Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. B Rev. 14, 149–165 (2008).

    Article  CAS  Google Scholar 

  122. Boontheekul, T., Kong, H. & Mooney, D. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26, 2455–2465 (2005).

    Article  CAS  Google Scholar 

  123. O'Sullivan, E. S., Vegas, A., Anderson, D. G. & Weir, G. C. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr. Rev. 32, 827–844 (2011).

    Article  CAS  Google Scholar 

  124. Sun, Y., Ma, X., Zhou, D., Vacek, I. & Sun, A. M. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Investig. 98, 1417–1422 (1996).

    Article  CAS  Google Scholar 

  125. Chang, T. M. S. Artificial liver support based on artificial cells with emphasis on encapsulated hepatocytes. Artif. Organs 16, 71–74 (2008).

    Article  Google Scholar 

  126. Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  Google Scholar 

  127. Brown, K. V. et al. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng. A 17, 1735–1746 (2011).

    Article  CAS  Google Scholar 

  128. Kolambkar, Y. M. et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32, 65–74 (2011).

    Article  CAS  Google Scholar 

  129. Lucas, P. A. et al. Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. J. Biomed. Mater. Res. 24, 901–911 (1990).

    Article  CAS  Google Scholar 

  130. Hedberg, E. L. et al. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res. 72A, 343–353 (2005).

    Article  CAS  Google Scholar 

  131. Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartilage 17, 971–979 (2009).

    Article  CAS  Google Scholar 

  132. Steadman, J. R. et al. Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy 19, 477–484 (2003).

    Article  Google Scholar 

  133. Breinan, H. A., Martin, S. D., Hsu, H.-P. & Spector, M. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J. Orthop. Res. 18, 781–789 (2000).

    Article  CAS  Google Scholar 

  134. Nöth, U., Steinert, A. F. & Tuan, R. S. Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nature Clin. Pract. Rheumatol. 4, 371–380 (2008).

    Article  CAS  Google Scholar 

  135. Gille, J. et al. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg. Sports Traumatol. Arthrosc. 18, 1456–1464 (2010).

    Article  CAS  Google Scholar 

  136. Lee, C. H. et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet 376, 440–448 (2010).

    Article  CAS  Google Scholar 

  137. Huang, Q., Goh, J. C. H., Hutmacher, D. W. & Lee, E. H. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Eng. 8, 469–482 (2002).

    Article  CAS  Google Scholar 

  138. Driver, V. R., Fabbi, M., Lavery, L. A. & Gibbons, G. The costs of diabetic foot: the economic case for the limb salvage team. J. Am. Podiat. Med. Assoc. 100, 335–341 (2010).

    Article  Google Scholar 

  139. Lynch, S. E., Nixon, J. C., Colvin, R. B. & Antoniades, H. N. Role of platelet-derived growth factor in wound healing: Synergistic effects with other growth factors. Proc. Natl Acad. Sci. USA 84, 7696–7700 (1987).

    Article  CAS  Google Scholar 

  140. Metcalfe, A. D. & Ferguson, M. W. J. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4, 413–437 (2007).

    Article  CAS  Google Scholar 

  141. Yannas, I. V. & Burke, J. F. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14, 65–81 (1980).

    Article  CAS  Google Scholar 

  142. Pandit, A., Ashar, R. & Feldman, D. The effect of TGF-beta delivered through a collagen scaffold on wound healing. J. Investig. Surg. 12, 89–100 (1999).

    Article  CAS  Google Scholar 

  143. Kawai, K., Suzuki, S., Tabata, Y., Ikada, Y. & Nishimura, Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21, 489–499 (2000).

    Article  CAS  Google Scholar 

  144. Gu, D. Adenovirus encoding human platelet-derived growth factor-B delivered in collagen exhibits safety, biodistribution, and immunogenicity profiles favorable for clinical use. Mol. Ther. 9, 699–711 (2004).

    Article  CAS  Google Scholar 

  145. Huang, Y-C., Kaigler, D., Rice, K. G., Krebsbach, P. H. & Mooney, D. J. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 20, 848–857 (2004).

    Article  CAS  Google Scholar 

  146. Kofron, M. D. & Laurencin, C. T. Bone tissue engineering by gene delivery. Adv. Drug Deliv. Rev. 58, 555–576 (2006).

    Article  CAS  Google Scholar 

  147. Peterson, B. et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 11, 120–129 (2005).

    Article  CAS  Google Scholar 

  148. Sugiyama, O. et al. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol. Ther. 11, 390–398 (2005).

    Article  CAS  Google Scholar 

  149. Geiger, F. et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 41, 516–522 (2007).

    Article  CAS  Google Scholar 

  150. Jabbarzadeh, E. et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach. Proc. Natl Acad. Sci. USA 105, 11099–11104 (2008).

    Article  CAS  Google Scholar 

  151. Peng, H. et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Investig. 110, 751–759 (2002).

    Article  CAS  Google Scholar 

  152. Blumenthal, B. et al. Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: A promising tool to regenerate myocardial function. Artif. Organs 34, E46–E54 (2010).

    Article  CAS  Google Scholar 

  153. Egaña, J. T. et al. Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration. Tissue Eng. A 15, 1191–1200 (2008).

    Article  Google Scholar 

  154. Park, H., Temenoff, J. S., Tabata, Y., Caplan, A. I. & Mikos, A. G. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28, 3217–3227 (2007).

    Article  CAS  Google Scholar 

  155. Koffler, J. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl Acad. Sci. USA 108, 14789–14794 (2011).

    Article  CAS  Google Scholar 

  156. Kneser, U. et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J. Biomed. Mater. Res. 47, 494–503 (1999).

    Article  CAS  Google Scholar 

  157. Bruns, H. et al. Injectable liver: A novel approach using fibrin gel as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng. 11, 1718–1726 (2005).

    Article  CAS  Google Scholar 

  158. Vandenburgh, H. et al. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther. 7, 2195–2200 (1996).

    Article  CAS  Google Scholar 

  159. Borselli, C., Cezar, C. A., Shvartsman, D., Vandenburgh, H. H. & Mooney, D. J. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32, 8905–8914 (2011).

    Article  CAS  Google Scholar 

  160. Silva, E. A., Kim, E-S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA 105, 14347–14352 (2008).

    Article  CAS  Google Scholar 

  161. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater. 8, 151–158 (2009).

    Article  CAS  Google Scholar 

  162. Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 8ra19 (2009).

    Article  CAS  Google Scholar 

  163. Kong, H., Lee, K. & Mooney, D. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer 43, 6239–6246 (2002).

    Article  CAS  Google Scholar 

  164. Chenite, A. et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21, 2155–2161 (2000).

    Article  CAS  Google Scholar 

  165. Liu, X., Jin, X. & Ma, P. X. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Mater. 10, 398–406 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the NIH to the authors' laboratory is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearney, C., Mooney, D. Macroscale delivery systems for molecular and cellular payloads. Nature Mater 12, 1004–1017 (2013). https://doi.org/10.1038/nmat3758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3758

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research