Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ferroelectric-like structural transition in a metal


Metals cannot exhibit ferroelectricity because static internal electric fields are screened by conduction electrons1, but in 1965, Anderson and Blount predicted the possibility of a ferroelectric metal, in which a ferroelectric-like structural transition occurs in the metallic state2. Up to now, no clear example of such a material has been identified. Here we report on a centrosymmetric () to non-centrosymmetric (R3c) transition in metallic LiOsO3 that is structurally equivalent to the ferroelectric transition of LiNbO3 (ref. 3). The transition involves a continuous shift in the mean position of Li+ ions on cooling below 140 K. Its discovery realizes the scenario described in ref. 2, and establishes a new class of materials whose properties may differ from those of normal metals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Temperature variation of the structural properties of LiOsO3 from Rietveld analysis of neutron diffraction data.
Figure 2: Experimental and simulated CBED patterns for LiOsO3 taken along the [120] zone axis.
Figure 3: Temperature variation of the electrical, magnetic and calorimetric properties of LiOsO3.


  1. 1

    Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).

    Google Scholar 

  2. 2

    Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: ‘Ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).

    CAS  Article  Google Scholar 

  3. 3

    Boysen, H. & Altorfer, F. A neutron powder investigation of the high-temperature structure and phase transition in LiNbO3 . Acta Crystallogr. B 50, 405–414 (1994).

    Article  Google Scholar 

  4. 4

    Testardi, L. R. Structural instability and superconductivity in A-15 compounds. Rev. Mod. Phys. 47, 637–648 (1975).

    CAS  Article  Google Scholar 

  5. 5

    Paduani, C. & Kuhnen, C. A. Martensitic phase transition from cubic to tetragonal V3Si: An electronic structure study. Eur. Phys. J. 66, 353–359 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Sergienko, I. A. et al. Metallic ferroelectricity in the pyrochlore Cd2Re2O7 . Phys. Rev. Lett. 92, 065501 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Tachibana, M., Taira, N., Kawaji, H. & Takayama-Muromachi, E. Thermal properties of Cd2Re2O7 and Cd2Nb2O7 at the structural phase transitions. Phys. Rev. B 82, 054108 (2010).

    Article  Google Scholar 

  8. 8

    Kolodiazhnyi, T., Tachibana, M., Kawaji, H., Hwang, J. & Takayama-Muromachi, E. Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition. Phys. Rev. Lett. 104, 147602 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Jeong, I-K. et al. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3−δ studied using neutron total scattering and Rietveld analysis. Phys. Rev. B 84, 064125 (2011).

    Article  Google Scholar 

  10. 10

    Navrotsky, A. Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem. Mater. 10, 2787–2793 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Abrahams, S. C., Buehler, E., Hamilton, W. C. & Laplaca, S. J. Ferroelectric lithium tantalate—III. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940 °K. J. Phys. Chem. Solids 34, 521–532 (1973).

    CAS  Article  Google Scholar 

  12. 12

    Toledano, J. C. & Toledano, P. The Landau Theory of Phase Transitions (World Scientific, 1987).

    Google Scholar 

  13. 13

    Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: A web-based tool for exploring structural distortions. J. Appl. Crystallogr. 39, 607–614 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Tanaka, M. & Tsuda, K. Convergent-beam electron diffraction. J. Electron Microsc. 60, S245–S267 (2011).

    CAS  Google Scholar 

  15. 15

    Ohgushi, K. et al. Structural and electronic properties of pyrochlore-type A2Re2O7 (A = Ca, Cd, and Pb). Phys. Rev. B 83, 125103 (2011).

    Article  Google Scholar 

  16. 16

    Shi, Y. G. et al. Continuous metal–insulator transition of the antiferromagnetic perovskite NaOsO3 . Phys. Rev. B 80, 161104(R) (2009).

    Article  Google Scholar 

  17. 17

    Jin, R. et al. Fluctuation effects on the physical properties of Cd2Re2O7 near 200 K. J. Phys. Condens. Matter 14, L117–L123 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Hiroi, Z., Hanawa, M., Muraoka, Y. & Harima, H. Correlations and semimetallic behaviors in pyrochlore oxide Cd2Re2O7 . J. Phys. Soc. Jpn 72, 21–24 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Storchak, V. G. et al. Spin polarons in the correlated metallic pyrochlore Cd2Re2O7 . Phys. Rev. Lett. 105, 076402 (2010).

    Article  Google Scholar 

  20. 20

    Abrahams, S. C., Levinstein, H. J. & Reddy, J. M. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24 and 1200 °C. J. Phys. Chem. Solids 27, 1019–1026 (1966).

    CAS  Article  Google Scholar 

  21. 21

    Weis, R. S. & Gaylord, T. K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

    Article  Google Scholar 

  22. 22

    Prokhorov, A. M. & Kuz’minov, Y. S. Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, 1990).

    Google Scholar 

  23. 23

    Ohkubo, Y. et al. Mechanism of the ferroelectric phase transition in LiNbO3 and LiTaO3 . Phys. Rev. B 65, 052107 (2002).

    Article  Google Scholar 

  24. 24

    Yildirim, T. Ferroelectric soft phonons, charge density wave instability, and strong electron-phonon coupling in BiS2 layered superconductors: A first-principles study. Phys. Rev. B 87, 020506(R) (2013).

    Article  Google Scholar 

Download references


We thank M. Miyakawa (NIMS) for the high-pressure synthesis experiment, H. X. Yang (CAS) and J. Q. Li (CAS) for the ED study, S. Takenouchi (NIMS) for the AAS, and A. Aimi (Gakushuin Univ.), M. Tachibana (NIMS) and M. Terauchi (Tohoku Univ.) for discussion and suggestions. This research was supported in part by the World Premier International Research Center from MEXT, Japan; a Grant-in-Aid for Scientific Research (22246083 and 25289233) from JSPS, Japan; the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from JSPS, Japan; the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST), Japan; the 973 project of the Ministry of Science and Technology of China (No. 2011CB921701 and 2011CBA00110), China; and the United Kingdom Engineering and Physical Sciences Research Council (EPSRC).

Author information




Y.S. and K.Y. conceived the experiments. Y.S. grew and characterized the crystals together with Y.G., X.W., S.Y. and N.W. Y.M. and A.S. conducted crystal structure analysis by XRD. A.J.P., Y.G., D.K. and P.M. performed powder neutron diffraction measurements and analysis. K.T. performed the CBED experiments, data analysis, and data interpretation. M. Arai investigated the electronic structure by first-principles calculation. Y.S. and M. Akaogi investigated the crystal structure stability under high-pressure conditions. K.Y. and A.T.B. supervised the project and co-wrote the paper. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Kazunari Yamaura or Andrew T. Boothroyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 541 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shi, Y., Guo, Y., Wang, X. et al. A ferroelectric-like structural transition in a metal. Nature Mater 12, 1024–1027 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing