Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fabrication and deformation of three-dimensional hollow ceramic nanostructures

Abstract

Creating lightweight, mechanically robust materials has long been an engineering pursuit. Many siliceous skeleton species—such as diatoms, sea sponges and radiolarians—have remarkably high strengths when compared with man-made materials of the same composition, yet are able to remain lightweight and porous1,2,3,4,5,6,7. It has been suggested that these properties arise from the hierarchical arrangement of different structural elements at their relevant length scales8,9. Here, we report the fabrication of hollow ceramic scaffolds that mimic the length scales and hierarchy of biological materials. The constituent solids attain tensile strengths of 1.75 GPa without failure even after multiple deformation cycles, as revealed by in situ nanomechanical experiments and finite-element analysis. We discuss the high strength and lack of failure in terms of stress concentrators at surface imperfections and of local stresses within the microstructural landscape. Our findings suggest that the hierarchical design principles offered by hard biological organisms can be applied to create damage-tolerant lightweight engineering materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Skeletal natural biological materials versus TiN nanolattices.
Figure 2: Compression experiments on a single unit cell.
Figure 3: Finite-element analysis of the top half of a unit cell.
Figure 4

References

  1. Kröger, N. Prescribing diatom morphology: Toward genetic engineering of biological nanomaterials. Curr. Opin. Chem. Biol. 11, 662–669 (2007).

    Article  Google Scholar 

  2. Aizenberg, J. et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    CAS  Article  Google Scholar 

  3. Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158, 93–106 (2007).

    CAS  Article  Google Scholar 

  4. Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003).

    CAS  Article  Google Scholar 

  5. Yang, W. et al. Natural flexible dermal armor. Adv. Mater. 25, 31–48 (2013).

    Article  Google Scholar 

  6. Weiner, S. & Wagner, H. D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    CAS  Article  Google Scholar 

  7. Kamat, S., Su, X., Ballarini, R. & Heuer, A. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000).

    CAS  Article  Google Scholar 

  8. Jäger, I. & Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000).

    Article  Google Scholar 

  9. Gao, H., Ji, B., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    CAS  Article  Google Scholar 

  10. Robinson, W. J. & Goll, R. M. Fine skeletal structure of the radiolarian Callimitra carolotae Haeckel. Micropaleontology 24, 432–439 (1978).

    Article  Google Scholar 

  11. Sarikaya, M. & Aksay, I. A. Nacre of abalone shell: A natural multifunctional nanolaminated ceramic-polymer composite material. Results Probl. Cell Diff. 19, 1–26 (1992).

    CAS  Article  Google Scholar 

  12. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure And Properties 2nd edn Vol. 2 (Cambridge Univ. Press, 1999).

    Google Scholar 

  13. Greer, J. R. & De Hosson, J. T. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    CAS  Article  Google Scholar 

  14. Jang, D. & Greer, J. R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nature Mater. 9, 215–219 (2010).

    CAS  Article  Google Scholar 

  15. Korte, S., Barnard, J., Stearn, R. & Clegg, W. Deformation of silicon Insights from microcompression testing at 25500C. Int. J. Plast. 27, 1853–1866 (2011).

    CAS  Article  Google Scholar 

  16. Östlund, F. et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009).

    Article  Google Scholar 

  17. Matoy, K. et al. A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518, 247–256 (2009).

    CAS  Article  Google Scholar 

  18. Jang, D. & Greer, J. R. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr. Mater. 64, 77–80 (2011).

    CAS  Article  Google Scholar 

  19. Gu, X. W. et al. Size dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 12, 6385–6392 (2012).

    CAS  Article  Google Scholar 

  20. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 1st edn (Prentice-Hall, 1998).

    Google Scholar 

  21. Kingery, W. D., Bowen, H. K. & Uhlmann, D. R. Introduction to Ceramics 2nd edn (Wiley, 1975).

    Google Scholar 

  22. Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    CAS  Article  Google Scholar 

  23. Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012).

    Article  Google Scholar 

  24. Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).

    Article  Google Scholar 

  25. Law, K. & Gardner, L. Lateral instability of elliptical hollow section beams. Eng. Struct. 37, 152–166 (2012).

    Article  Google Scholar 

  26. Li, C., Ru, C. Q. & Mioduchowski, A. Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. Biochem. Biophys. Res. Commun. 351, 159–164 (2006).

    CAS  Article  Google Scholar 

  27. Shackelford, J. F. & Alexander, W. Materials Science and Engineering Handbook 3rd edn (CRC Press, 2000).

    Book  Google Scholar 

  28. Andrievski, R. Physical-mechanical properties of nanostructured titanium nitride. Nanostruct. Mater. 9, 607–610 (1997).

    CAS  Article  Google Scholar 

  29. Lim, J-W., Park, H-S., Park, T-H., Lee, J-J. & Joo, J. Mechanical properties of titanium nitride coatings deposited by inductively coupled plasma assisted direct current magnetron sputtering. J. Vac. Sci. Technol. A 18, 524–528 (2000).

    CAS  Article  Google Scholar 

  30. George, S. M. Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010).

    CAS  Article  Google Scholar 

  31. Gu, X. W., Wu, Z., Zhang, Y-W., Srolovitz, D. J. & Greer, J. R. Flaw-driven failure in nanostructures (2013); preprint at http://arxiv.org/1307.3182.

  32. Wiederhorn, S. M. Brittle fracture and toughening mechanisms in ceramics. Annu. Rev. Mater. Sci. 14, 373–403 (1984).

    CAS  Article  Google Scholar 

  33. Kumar, S., Wolfe, D. & Haque, M. Dislocation shielding and flaw tolerance in titanium nitride. Int. J. Plast. 27, 739–747 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Dow-Resnick Innovation Fund at Caltech, DARPA’s Materials with Controlled Microstructure and Architecture program, and the Army Research Office through the Institute for Collaborative Biotechnologies (ICB) at Caltech (ARO Award number UCSB.ICB4b). Part of this work was carried out at the Jet Propulsion Laboratory under a contract with NASA. The authors acknowledge critical support and infrastructure provided by the Kavli Nanoscience Institute at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

D.J. and L.R.M. fabricated the samples and conducted all experiments. F.G. deposited TiN by ALD in the Microdevices Laboratory at the Jet Propulsion Laboratory. L.R.M. performed finite-element analysis. J.R.G. conceived of the research and provided guidance. All authors analysed the data, discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Julia R. Greer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 258 kb)

Supplementary Information

Supplementary Movie S1 (AVI 12651 kb)

Supplementary Information

Supplementary Movie S2 (AVI 44394 kb)

Supplementary Information

Supplementary Movie S3 (AVI 54288 kb)

Supplementary Information

Supplementary Movie S4 (AVI 55589 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang, D., Meza, L., Greer, F. et al. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Mater 12, 893–898 (2013). https://doi.org/10.1038/nmat3738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing