A stable cathode for the aprotic Li–O2 battery



Rechargeable lithium–air (O2) batteries are receiving intense interest because their high theoretical specific energy exceeds that of lithium-ion batteries. If the Li–O2 battery is ever to succeed, highly reversible formation/decomposition of Li2O2 must take place at the cathode on cycling. However, carbon, used ubiquitously as the basis of the cathode, decomposes during Li2O2 oxidation on charge and actively promotes electrolyte decomposition on cycling. Replacing carbon with a nanoporous gold cathode, when in contact with a dimethyl sulphoxide-based electrolyte, does seem to demonstrate better stability. However, nanoporous gold is not a suitable cathode; its high mass destroys the key advantage of Li–O2 over Li ion (specific energy), it is too expensive and too difficult to fabricate. Identifying a suitable cathode material for the Li–O2 cell is one of the greatest challenges at present. Here we show that a TiC-based cathode reduces greatly side reactions (arising from the electrolyte and electrode degradation) compared with carbon and exhibits better reversible formation/decomposition of Li2O2 even than nanoporous gold (>98% capacity retention after 100 cycles, compared with 95% for nanoporous gold); it is also four times lighter, of lower cost and easier to fabricate. The stability may originate from the presence of TiO2 (along with some TiOC) on the surface of TiC. In contrast to carbon or nanoporous gold, TiC seems to represent a more viable, stable, cathode for aprotic Li–O2 cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cycling curves and capacity retention of TiC cathodes.
Figure 2: FTIR spectra of cycled TiC cathodes, at the end of discharge and charge.
Figure 3: PXRD patterns of TiC cathodes.
Figure 4: Quantification of carbonaceous side products in the cycled cathodes.
Figure 5: Ti 2p XPS spectra of titanium carbide, cycled in 0.5 M LiClO4 in DMSO.


  1. 1

    Scrosati, B., Hassoun, J. & Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li–O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Shao, Y. et al. Electrocatalysts for nonaqueous lithium–air batteries: Status, challenges, and perspective. ACS Catal. 2, 844–857 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Garcia-Arae, N. & Novák, P. Critical aspects in the development of lithium–air batteries. J. Solid State. Electrochem. 17, 1793–1807 (2013).

    Article  CAS  Google Scholar 

  7. 7

    Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–ir battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Lu, Y-C. et al. Lithium–oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Zhang, T., Imanishi, N., Takeda, Y. & Yamamoto, O. Aqueous lithium/air rechargeable batteries. Chem. Lett. 40, 668–673 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable LI2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Peled, E., Golodnitsky, D., Mazor, H., Goor, M. & Avshalomov, S. Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835–6840 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater. 12, 228–232 (2013).

    CAS  Article  Google Scholar 

  15. 15

    McCloskey, B. B., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Freunberger, S. A. et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Xu, W. et al. The stability of organic solvents and carbon electrode in nonaqueous Li–O2 batteries. J. Power Sources 215, 240–247 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Zhengcheng, Z. et al. Increased stability toward oxygen reduction products for lithium–air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25542 (2011).

    Article  CAS  Google Scholar 

  19. 19

    Guo, Z., Zhu, G., Qiu, Z., Wang, Y. & Xia, Y. High performance Li–O2 battery using γ-MnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. Electrochem. Commun. 25, 26–29 (2012).

    CAS  Article  Google Scholar 

  20. 20

    McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Gallant, B. M. et al. Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J. Phys. Chem. C 116, 20800–20805 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in non-aqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Sharon, D. et al. On the challenge of electrolyte solutions for Li–air batteries: Monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J. Phys. Chem. Lett. 4, 127–131 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Tsiouvaras, N., Meini, S., Buchberger, I. & Gasteiger, H. A. A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li–O2 battery. J. Electrochem. Soc. 160, A471–A477 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Chen, Y., Freunberger, S. A., Peng, Z., Barde, F. & Bruce, P. G. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Peng, Z., Freunberger, S. A., Chen, Y. H. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Bryantsev, V. et al. The identification of stable solvents for nonaqueous rechargeable Li-air batteries. J. Electrochem. Soc. 160, A160–A171 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Mo, Y., Ong, S. P. & Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium–air battery. Phys. Rev. B 84, 205446–205454 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Radin, M. D., Rodriguez, J. F., Tian, F. & Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Bryantsev, V. et al. Predicting solvent stability in aprotic electrolyte Li–air batteries: Nucleophilic substitution by the superoxide anion radical (O2·). J. Phys. Chem. A 115, 12399–12409 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Xu, D. et al. A stable sulfone based electrolyte for high performance rechargeable Li–O2 batteries. Chem. Commun. 48, 11674–11676 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Walker, W. et al. A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Younesi, R. et al. Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li–O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES). J. Phys. Chem. C 116, 18597–18604 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Freunberger, S. A. et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Kim, J., Lee, J. & Tak, Y. Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation. J. Power Sources 192, 674–678 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Trahan, M. J., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J. Electrochem. Soc. 160, A259–A267 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Xu, D., Wang, Z-L., Xu, J-J., Zhang, L-L. & Zhang, X-B. Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries. Chem. Commun. 48, 6948–6950 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Jung, H. G., Hassoun, J., Park, J. B., Sun, Y. K. & Scrosati, B. An improved high-performance lithium–air battery. Nature Chem. 4, 579–585 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Black, R, Lee, J-H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed. 52, 392–396 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Oh, S. H., Black, R., Pomerantseva, E., Lee, J-H. & Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for Li–O2 batteries. Nature Chem 4, 1004–1010 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Hassoun, J. et al. A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium–air batteries. Nano Lett. 12, 5775–5779 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Andersson, A. S. & Thomas, J. O. The source of first-cycle capacity loss in LiFePO4 . J. Power Sources 97–98, 498–502 (2001).

    Article  Google Scholar 

  45. 45

    Padhi, A. K., Nanjundaswany, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

    CAS  Article  Google Scholar 

  46. 46

    Qi, Y. & Harris, S. J. In situ observation of strains during lithiation of a graphite electrode. J. Electrochem. Soc. 157, A741–A747 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Vetter, J. et al. Ageing mechanisms in lithium-ion batteries. J. Power Sources 147, 269–281 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Dahn, J. R. Phase diagram of LixC6 . Phys. Rev. B 44, 9170–9177 (1991).

    CAS  Article  Google Scholar 

  49. 49

    Larcher, D. et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17, 3759–3772 (2007).

    CAS  Article  Google Scholar 

  50. 50

    Zhong, L. et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2 . Nano Lett. 13, 2209–2214 (2013).

    CAS  Article  Google Scholar 

  51. 51

    Shackelford, J. F. & Alexander, W. Materials Science and Engineering Handbook 3 edn, Ch. 7 (CRC, 2001).

    Google Scholar 

  52. 52

    Li, F. et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li–O2 batteries. Chem. Commun. 49, 1175–1177 (2013).

    CAS  Article  Google Scholar 

  53. 53

    Mitchell, R. R., Gallant, B. M., Shao-Horn, Y. & Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013).

    CAS  Article  Google Scholar 

  54. 54

    Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy. Environ. Sci. 6, 1772–1778 (2013).

    CAS  Article  Google Scholar 

  55. 55

    Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nature Chem. 5, 489–494.

Download references


P.G.B. is indebted to the EPSRC including the SUPERGEN programme for financial support. The authors thank S. Francis of the surface science group, St Andrews University for the XPS data.

Author information




M.M.O.T. carried out experiments. P.G.B. wrote the manuscript. All authors contributed to the discussion and interpretation of the results.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2660 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ottakam Thotiyl, M., Freunberger, S., Peng, Z. et al. A stable cathode for the aprotic Li–O2 battery. Nature Mater 12, 1050–1056 (2013). https://doi.org/10.1038/nmat3737

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing