Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters


The diminished surface-area-normalized catalytic activity of highly dispersed Pt nanoparticles compared with bulk Pt is particularly intricate, and not yet understood. Here we report on the oxygen reduction reaction (ORR) activity of well-defined, size-selected Pt nanoclusters; a unique approach that allows precise control of both the cluster size and coverage, independently. Our investigations reveal that size-selected Pt nanoclusters can reach extraordinarily high ORR activities, especially in terms of mass-normalized activity, if deposited at high coverage on a glassy carbon substrate. It is observed that the Pt cluster coverage, and hence the interparticle distance, decisively influence the observed catalytic activity and that closely packed assemblies of Pt clusters approach the surface activity of bulk Pt. Our results open up new strategies for the design of catalyst materials that circumvent the detrimental dispersion effect, and may eventually allow the full electrocatalytic potential of Pt nanoclusters to be realized.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maximum achieved ORR activities.
Figure 2: Specific activity versus edge-to-edge distance.
Figure 3: Representative SEM micrographs of Pt> 46 nanoclusters supported on glassy carbon electrodes.
Figure 4: Nanocluster distribution before and after the activity measurements.
Figure 5: Simulated compact layer potential at different edge-to-edge distances.


  1. Kibsgaard, J., Gorlin, Y., Chen, Z. B. & Jaramillo, T. F. Meso-structured platinum thin films: Active and stable electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 7758–7765 (2012).

    Article  CAS  Google Scholar 

  2. Kinoshita, K. Particle-size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 137, 845–848 (1990).

    Article  CAS  Google Scholar 

  3. Komanicky, V. et al. Shape-dependent activity of platinum array catalyst. J. Am. Chem. Soc. 131, 5732–5733 (2009).

    Article  CAS  Google Scholar 

  4. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 121–229 (2002).

    Article  Google Scholar 

  5. Peuckert, M., Yoneda, T., Betta, R. A. D. & Boudart, M. Oxygen reduction on small supported platinum particles. J. Electrochem. Soc. 133, 944–947 (1986).

    Article  CAS  Google Scholar 

  6. Rabis, A., Rodriguez, P. & Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2, 864–890 (2012).

    Article  CAS  Google Scholar 

  7. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  8. Watanabe, M., Sei, H. & Stonehart, P. The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. 261, 375–387 (1989).

    Article  CAS  Google Scholar 

  9. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  10. Mayrhofer, K. J. J. et al. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005).

    Article  CAS  Google Scholar 

  11. Nesselberger, M. et al. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 133, 17428–17433 (2011).

    Article  CAS  Google Scholar 

  12. Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. 51, 4641–4643 (2012).

    Article  CAS  Google Scholar 

  13. Tritsaris, G. A., Greeley, J., Rossmeisl, J. & Norskov, J. K. Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal. Lett. 141, 909–913 (2011).

    Article  CAS  Google Scholar 

  14. Heiz, U., Vanolli, F., Trento, L. & Schneider, W. D. Chemical reactivity of size-selected supported clusters: An experimental setup. Rev. Scient. Instrum. 68, 1986–1994 (1997).

    Article  CAS  Google Scholar 

  15. Kunz, S. et al. Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. Phys. Chem. Chem. Phys. 12, 10288–10291 (2010).

    Article  CAS  Google Scholar 

  16. Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Mater. 8, 213–216 (2009).

    Article  CAS  Google Scholar 

  17. Miller, P. E. & Denton, M. B. The transmission properties of an rf-only quadrupole mass filter. Int. J. Mass Spectrom. Ion Process. 72, 223–238 (1986).

    Article  CAS  Google Scholar 

  18. Kettner, M., Schneider, W. B. & Auer, A. A. Computational study of Pt/Co core–shell nanoparticles: Segregation, adsorbates and catalyst activity. J. Phys. Chem. C 116, 15432–15438 (2012).

    Article  CAS  Google Scholar 

  19. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  20. Strménik, D. Active Sites for PEM Fuel Cell Reactions in Model and Real Systems PhD thesis, Univ. Ljubljana (2007).

  21. Hartl, K. et al. Electrochemically induced nanocluster migration. Electrochim. Acta 56, 810–816 (2010).

    Article  CAS  Google Scholar 

  22. Fuhrmann, J. et al. The role of reactive reaction intermediates in two-step heterogeneous electrocatalytic reactions: A model study. Fuel Cells 11, 501–510 (2011).

    Article  CAS  Google Scholar 

  23. Inaba, M., Yamada, H., Tokunaga, J. & Tasaka, A. Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation. Electrochem. Solid State Lett. 7, A474–A476 (2004).

    Article  CAS  Google Scholar 

  24. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  25. Mayrhofer, K. J. J. & Arenz, M. Log on for new catalysts. Nature Chem. 1, 518–519 (2009).

    Article  CAS  Google Scholar 

  26. Bae, J. H., Han, J.-H. & Chung, T. D. Electrochemistry at nanoporous interfaces: New opportunity for electrocatalysis. Phys. Chem. Chem. Phys. 14, 448–463 (2012).

    Article  CAS  Google Scholar 

  27. Strmcnik, D et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chem. 1, 466–472 (2009).

    Article  CAS  Google Scholar 

  28. Stern, O. The theory of the electrolytic double shift. Z. Elektrochem. Angew. Phys. Chem. 30, 508–516 (1924).

    CAS  Google Scholar 

  29. Delahay, P. J. Double Layer and Electrode Kinetics (Interscience, 1965).

    Google Scholar 

  30. Schweinberger, F. F. Catalysis with Supported Size-selected Pt Clusters PhD thesis, Technische Universität München (2013).

  31. Mayrhofer, K. J. J., Wiberg, G. K. H. & Arenz, M. Impact of glass corrosion on the electrocatalysis on Pt electrodes in alkaline electrolyte. J. Electrochem. Soc. 155, P1–P5 (2008).

    Article  CAS  Google Scholar 

  32. Torquato, S., Lu, B. & Rubinstein, J. Nearest-neighbor distribution-functions in many-body systems. Phys. Rev. A 41, 2059–2075 (1990).

    Article  CAS  Google Scholar 

  33. Hamou, R. F., Biedermann, P. U., Erbe, A. & Rohwerder, M. Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochim. Acta 55, 5210–5222 (2010).

    Article  CAS  Google Scholar 

  34. Macdonald, J. R. & Barlow, C. A. Theory of double-layer differential capacitance in electrolytes. J. Chem. Phys. 36, 3062–3080 (1962).

    Article  CAS  Google Scholar 

  35. Booth, F. Dielectric constant of polar liquids at high field strengths. J. Chem. Phys. 23, 453–457 (1955).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Danish DFF through grant # 10-081337 and the German DFG through the Emmy Noether project Are852/1-1. The authors would like to acknowledge the contributions of M. Thämer and A. Kartouzian for the preparation of the Pt20 samples.

Author information

Authors and Affiliations



M.A., K.J.J.M. and S.K. designed and built the transfer chamber. S.K., F.F.S. and U.H. designed the cluster experiment and deposited the cluster samples. M.R. performed the SEM measurements. M.A. and K.J.J.M. designed the electrochemical measurements. M.N., S.A, G.K.H.W., K.S. and M.R. performed and analysed the electrochemical measurements. R.F.H. and P.U.B. performed and analysed the computational modelling. M.A. wrote the paper.

Corresponding author

Correspondence to Matthias Arenz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1239 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nesselberger, M., Roefzaad, M., Fayçal Hamou, R. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nature Mater 12, 919–924 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing