Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effect of airborne contaminants on the wettability of supported graphene and graphite

Abstract

It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet–O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Characterization of CVD-grown single-layer graphene.
Figure 2: Effect of air exposure on a graphene/copper sample.
Figure 3: Removal of hydrocarbon contaminants from a graphene/copper sample reduces its WCA.
Figure 4: Effect of intentional exposure to organic vapour on the WCA of a graphene/copper sample.
Figure 5: WCA of HOPG and CVD-grown multilayer graphene on a nickel substrate.
Figure 6

References

  1. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  2. Zhu, Y. W. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    Article  CAS  Google Scholar 

  3. O’Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).

    Article  CAS  Google Scholar 

  4. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  5. Kim, K. S. et al. Chemical vapor deposition-grown graphene: The thinnest solid lubricant. ACS Nano 5, 5107–5114 (2011).

    Article  CAS  Google Scholar 

  6. Chen, S. S. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011).

    Article  CAS  Google Scholar 

  7. Prasai, D., Tuberquia, J. C., Harl, R. R., Jennings, G. K. & Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 6, 1102–1108 (2012).

    Article  CAS  Google Scholar 

  8. Shim, J. et al. Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 12, 648–654 (2012).

    Article  CAS  Google Scholar 

  9. Ponomarenko, L. A. et al. Effect of a high- κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).

    Article  CAS  Google Scholar 

  10. Rafiee, J. et al. Wetting transparency of graphene. Nature Mater. 11, 217–222 (2012).

    Article  CAS  Google Scholar 

  11. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nature Nanotech. 6, 543–546 (2011).

    Article  CAS  Google Scholar 

  12. Ghosh, S. et al. Effect of 1-pyrene carboxylic-acid functionalization of graphene on its capacitive energy storage. J. Phys. Chem. C 116, 20688–20693 (2012).

    Article  CAS  Google Scholar 

  13. Shin, Y. J. et al. Surface-energy engineering of graphene. Langmuir 26, 3798–3802 (2010).

    Article  CAS  Google Scholar 

  14. Shih, C-J. et al. Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012).

    Article  CAS  Google Scholar 

  15. Kwon, K. C. et al. Extension of stability in organic photovoltaic cells using UV/ozone-treated graphene sheets. Solar Energy Mater. Solar Cells 109, 148–154 (2013).

    Article  CAS  Google Scholar 

  16. Chen, C. H. et al. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. 1883–1886 (Institute of Electrical and Electronics Engineers, 2011).

  17. Baraket, M. et al. Aminated graphene for DNA attachment produced via plasma functionalization. Appl. Phys. Lett. 100, 233123 (2012).

    Article  CAS  Google Scholar 

  18. Raj, R., Maroo, S. C. & Wang, E. N. Wettability of graphene. Nano Lett. 13, 1509–1515 (2013).

    Article  CAS  Google Scholar 

  19. Morcos, I. On contact angle and dispersion energy of the cleavage graphite/water system. J. Colloid. Interf. Sci. 34, 469–471 (1970).

    Article  CAS  Google Scholar 

  20. Fowkes, F. M. & Harkins, W. D. The state of monolayers adsorbed at the interface solid–aqueous solution. J. Am. Chem. Soc. 62, 3377–3386 (1940).

    Article  CAS  Google Scholar 

  21. Garcia, R., Osborne, K. & Subashi, E. Validity of the ‘sharp-kink approximation’ for water and other fluids. J. Phys. Chem. B 112, 8114–8119 (2008).

    Article  CAS  Google Scholar 

  22. Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T. & Koumoutsakos, P. On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003).

    Article  CAS  Google Scholar 

  23. Barber, A. H., Cohen, S. R. & Wagner, H. D. Static and dynamic wetting measurements of single carbon nanotubes. Phys. Rev. Lett. 92, 186103 (2004).

    Article  CAS  Google Scholar 

  24. Liu, H. T. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).

    Article  CAS  Google Scholar 

  25. Lee, C. Y., Choi, W., Han, J. H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    Article  CAS  Google Scholar 

  26. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  27. Smith, P. J. & Lindley, P. M. Analysis of organic contamination in semiconductor processing. AIP Conf. Proc. 449, 133–139 (1998).

    CAS  Google Scholar 

  28. Kurokawa, A., Odaka, K., Azuma, Y., Fujimoto, T. & Kojima, I. Diagnosis and cleaning of carbon contamination on SiO2 thin film. J. Sur. Anal. 15, 337–340 (2009).

    Article  CAS  Google Scholar 

  29. Millet, D. B. et al. Atmospheric volatile organic compound measurements during the Pittsburgh air quality study: Results, interpretation, and quantification of primary and secondary contributions. J. Geophys. Res. 110, D07s07 (2005).

    Article  CAS  Google Scholar 

  30. Bernett, M. K. & Zisman, W. A. Confirmation of spontaneous spreading by water on pure gold. J. Phys. Chem. 74, 2309–2312 (1970).

    Article  CAS  Google Scholar 

  31. Zubkov, T. et al. Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1x1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J. Phys. Chem. B 109, 15454–15462 (2005).

    Article  CAS  Google Scholar 

  32. Shinozaki, A., Arima, K., Morita, M., Kojima, I. & Azuma, Y. FTIR-ATR evaluation of organic contaminant cleaning methods for SiO2 surfaces. Anal. Sci. 19, 1557–1559 (2003).

    Article  CAS  Google Scholar 

  33. Choi, K., Eom, T. J. & Lee, C. Comparison of the removal efficiency for organic contaminants on silicon wafers stored in plastic boxes between UV/O3 and ECR oxygen plasma cleaning methods. Thin Solid Films 435, 227–231 (2003).

    Article  CAS  Google Scholar 

  34. Boinovich, L. B. et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings. Langmuir 28, 1206–1216 (2012).

    Article  CAS  Google Scholar 

  35. Fox, H. W., Hare, E. F. & Zisman, W. A. Wetting properties of organic liquids on high energy surfaces. J. Phys. Chem. 59, 1097–1106 (1955).

    Article  CAS  Google Scholar 

  36. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  37. Johnson, R. E. & Dettre, R. H. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J. Phys. Chem. 68, 1744–1750 (1964).

    Article  CAS  Google Scholar 

  38. Cancado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  CAS  Google Scholar 

  39. Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nature Chem. 4, 724–732 (2012).

    Article  CAS  Google Scholar 

  40. Smith, T. The hydrophilic nature of a clean gold surface. J. Colloid. Interf. Sci. 75, 51–55 (1980).

    Article  CAS  Google Scholar 

  41. Schneegans, M. & Menzel, E. Gold crystals solidified in air are hydrophilic. J. Colloid. Interf. Sci. 88, 97–99 (1982).

    Article  CAS  Google Scholar 

  42. Shirolkar, M. et al. Rapidly switched wettability of titania films deposited by dc magnetron sputtering. J. Phys. D 41, 155308 (2008).

    Article  CAS  Google Scholar 

  43. Afshari, A., Gunnarsen, L., Clausen, P. A. & Hansen, V. Emission of phthalates from PVC and other materials. Indoor Air 14, 120–128 (2004).

    Article  CAS  Google Scholar 

  44. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  CAS  Google Scholar 

  45. Adamson, A. W. Physical Chemistry of Surfaces 5th edn 403–408 (Wiley, 1990).

    Google Scholar 

  46. Edwards, R. S. & Coleman, K. S. Graphene synthesis: Relationship to applications. Nanoscale 5, 38–51 (2013).

    Article  CAS  Google Scholar 

  47. Ismach, A. et al. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010).

    Article  CAS  Google Scholar 

  48. Bewig, K. W. & Zisman, W. A. The wetting of gold and platinum by water. J. Phys. Chem. 69, 4238–4242 (1965).

    Article  CAS  Google Scholar 

  49. Taherian, F., Marcon, V., van der Vegt, N. F. A. & Leroy, F. What is the contact angle of water on graphene? Langmuir 29, 1457–1465 (2013).

    Article  CAS  Google Scholar 

  50. Hamada, I. Adsorption of water on graphene: A van der Waals density functional study. Phys. Rev. B 86, 195436 (2012).

    Article  CAS  Google Scholar 

  51. Voloshina, E., Usvyat, D., Schutz, M., Dedkov, Y. & Paulus, B. On the physisorption of water on graphene: a CCSD(T) study. Phys. Chem. Chem. Phys. 13, 12041–12047 (2011).

    Article  CAS  Google Scholar 

  52. Rubes, M., Kysilka, J., Nachtigall, P. & Bludsky, O. DFT/CC investigation of physical adsorption on a graphite (0001) surface. Phys. Chem. Chem. Phys. 12, 6438–6444 (2010).

    Article  CAS  Google Scholar 

  53. Suzuki, S. et al. Benzene forms hydrogen-bonds with water. Science 257, 942–944 (1992).

    Article  CAS  Google Scholar 

  54. Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46, 14–22 (2013).

    Article  CAS  Google Scholar 

  55. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  56. Dlubak, B., Kidambi, P. R., Weatherup, R. S., Hofmann, S. & Robertson, J. Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition. Appl. Phys. Lett. 100, 173113 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Taiho Kogyo Tribology Research Foundation, AFOSR YIP grant FA9550-13-1-0083 (H.L.), ONR N000141310575 (H.L.), the Mascaro Center for Sustainable Innovation (H.L.), the Central Research Development Fund of the University of Pittsburgh (H.L.) and NSF CMMI-1233161 (L.L.). We thank F. Wang and Y. Bie (UC Berkeley) for helpful discussion and for sharing their unpublished data.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and L.L. designed and directed the experiments. Z.L., A.K., Y.W., G.S., F.Z., R.M., P.I., B.M., A.K. and S.P.S. conducted the experiments. All authors discussed the results. H.L., Z.L. and L.L. wrote the manuscript.

Corresponding authors

Correspondence to Lei Li or Haitao Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 879 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Z., Wang, Y., Kozbial, A. et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature Mater 12, 925–931 (2013). https://doi.org/10.1038/nmat3709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing