Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution

Abstract

Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. To this end, promising results have been reported using 2H (trigonal prismatic) XS2 (where X = Mo or W) nanoparticles with a high concentration of metallic edges. The key challenges for XS2 are increasing the number and catalytic activity of active sites. Here we report monolayered nanosheets of chemically exfoliated WS2 as efficient catalysts for hydrogen evolution with very low overpotentials. Analyses indicate that the enhanced electrocatalytic activity of WS2 is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Our results suggest that chemically exfoliated WS2 nanosheets are interesting catalysts for hydrogen evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of chemically exfoliated WS2.
Figure 2: HER electrocatalytic properties of exfoliated WS2 nanosheets.
Figure 3: 1T phase stability and free-energy diagram for hydrogen evolution at equilibrium (U = 0) with tensile strain in atomically thin 1T WS2.

Similar content being viewed by others

References

  1. Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  2. Laursen, L. B., Kegnæs, S., Dahla, S. & Chorkendorff, I. Molybdenum sulfides efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012).

    Article  CAS  Google Scholar 

  3. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  4. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  5. Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    Article  CAS  Google Scholar 

  6. Bonde, J. et al. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2008).

    Article  CAS  Google Scholar 

  7. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  8. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  Google Scholar 

  9. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  10. Seger, B. et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 51, 9128–9131 (2012).

    Article  CAS  Google Scholar 

  11. Bollinger, M. V. et al. One-dimensional metallic edge states in MoS2 . Phys. Rev. Lett. 87, 196803 (2001).

    Article  CAS  Google Scholar 

  12. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  Google Scholar 

  13. Karunadasa, H. I., Chang, C. J. & Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 464, 1329–1333 (2010).

    Article  CAS  Google Scholar 

  14. Helm, M. L., Stewart, M. P., Bullock, R. M., Rakowski DuBois, M. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  Google Scholar 

  15. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article  CAS  Google Scholar 

  16. Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  17. Vrubel, H., Merki, D. & Hu, X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 5, 6136–6144 (2012).

    Article  CAS  Google Scholar 

  18. Chen, Z. et al. Core shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).

    Article  CAS  Google Scholar 

  19. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater. 11, 963–969 (2012).

    Article  CAS  Google Scholar 

  20. Li, Y. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  Google Scholar 

  21. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  22. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  23. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  24. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  25. Zhan, Y. et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  26. Liu, K. K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  27. Lee, Y-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  28. Chang, Y-H. et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 5, 756–760 (2012).

    Google Scholar 

  29. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  30. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    Article  CAS  Google Scholar 

  31. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  32. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  33. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

    Article  CAS  Google Scholar 

  34. Tsai, H-L., Heising, J., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. Exfoliated-restacked phase of WS2 . Chem. Mater. 9, 879–882 (1997).

    Article  CAS  Google Scholar 

  35. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimse, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater. 10, 456–461 (2011).

    Article  CAS  Google Scholar 

  36. Miremadi, B. K. & Morrison, S. R. The intercalation and exfoliation of tungsten disulfide. J. Appl. Phys. 63, 4970–4974 (1988).

    Article  CAS  Google Scholar 

  37. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999).

    Article  CAS  Google Scholar 

  38. Galindo, P. L. et al. The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy. 107, 1186–1193 (2007).

    Article  CAS  Google Scholar 

  39. Yang, D. & Frindt, R. F. Li-intercalation and exfoliation of WS2 . J. Phys Chem Solids. 57, 1113–1116 (1996).

    Article  CAS  Google Scholar 

  40. Green, C. L. & Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum–ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 106, 1036–1047 (2002).

    Article  CAS  Google Scholar 

  41. Kilgore, U. J. et al. [Ni(PPh2NC6H4X2)2]2+ complexes as electrocatalysts for H2 production: Effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 133, 5861–5872 (2011).

    Article  CAS  Google Scholar 

  42. Andreiadis, E. S. et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chem. 5, 48–53 (2013).

    Article  CAS  Google Scholar 

  43. McKone, J. R. et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573–3583 (2011).

    Article  CAS  Google Scholar 

  44. Chen, W-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  45. Kanan, M. W. et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  Google Scholar 

  46. Zaharieva, I. et al. Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Env. Sci. 4, 2400–2408 (2011).

    Article  CAS  Google Scholar 

  47. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

M. Chhowalla acknowledges financial support from NSF DGE 0903661. H.Y. acknowledges the Japan Society for the Promotion of Science (JSPS) for financial support through Postdoctoral Fellowship for Research Abroad. G.E. acknowledges financial support from NRF Singapore. J.L. and V.B.S. acknowledge support from Army Research Office through Contract W911NF-11-1-0171. T.A. acknowledges financial assistance from NSF (CAREER CHE-1004218, DMR-0968937, NanoEHS-1134289, NSF-ACIF, and Special Creativity Grant). R.S. and D.C.B.A. acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nı´vel Superior, Brazil for fellowships. R.S. also acknowledges the Fulbright Agency, USA for financial support. T.F. acknowledges partial support from JST-PRESTO ‘New Materials Science and Element Strategy’ and JSPS, Grant-in-Aid for challenging Exploratory Research (24656028). We thank M. Salehi for the AFM images.

Author information

Authors and Affiliations

Authors

Contributions

M. Chhowalla conceived the idea, designed the experiments, analysed the data and wrote the manuscript. D.V. conceived the idea and designed the experiments with M. Chhowalla, synthesized the WS2 nanosheets, characterized them with AFM, Raman and XPS, performed the HER measurements and analysed the data. H.Y. assisted in the synthesis and characterization of materials. J.L. and V.S. performed the theoretical work. T.F. and M. Chen performed the TEM work. R.S., D.C.B.A. and T.A. assisted D.V. with the HER measurements. G.E. analysed the TEM and strain data as well as editing the manuscript. All of the authors have read the manuscript and agree with its content.

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voiry, D., Yamaguchi, H., Li, J. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Mater 12, 850–855 (2013). https://doi.org/10.1038/nmat3700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing