Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying champion nanostructures for solar water-splitting

Abstract

Charge transport in nanoparticle-based materials underlies many emerging energy-conversion technologies, yet assessing the impact of nanometre-scale structure on charge transport across micrometre-scale distances remains a challenge. Here we develop an approach for correlating the spatial distribution of crystalline and current-carrying domains in entire nanoparticle aggregates. We apply this approach to nanoparticle-based α-Fe2O3 electrodes that are of interest in solar-to-hydrogen energy conversion. In correlating structure and charge transport with nanometre resolution across micrometre-scale distances, we have identified the existence of champion nanoparticle aggregates that are most responsible for the high photoelectrochemical activity of the present electrodes. Indeed, when electrodes are fabricated with a high proportion of these champion nanostructures, the electrodes achieve the highest photocurrent of any metal oxide photoanode for photoelectrochemical water-splitting under 100 mW cm−2 air mass 1.5 global sunlight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoelectrochemical response of nanostructured haematite electrodes.
Figure 2: Classical structure analysis by SEM and BF-TEM.
Figure 3: Identification of champion nanostructures.
Figure 4: Imaging the crystalline structure of nanoparticle aggregates.
Figure 5: Analysis of charge transport by C-AFM.
Figure 6: Modelling the water-splitting photocurrent for electrodes with grain boundaries.

Similar content being viewed by others

References

  1. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  2. Warren, S. C. et al. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 320, 1748–1752 (2008).

    Article  CAS  Google Scholar 

  3. Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    Article  CAS  Google Scholar 

  4. Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. & Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    Article  CAS  Google Scholar 

  5. Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009).

    Article  CAS  Google Scholar 

  6. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  Google Scholar 

  7. Ostwald, W. Lehrbuch der Allgemeinen Chemie. Vol. 2 (W. Engelmann Leipzig, 1896).

    Google Scholar 

  8. Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    Article  CAS  Google Scholar 

  9. Seager, C. H. & Ginley, D. S. Passivation of grain boundaries in polycrystalline silicon. Appl. Phys. Lett. 34, 337–340 (1979).

    Article  CAS  Google Scholar 

  10. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 39). Prog. Photovolt. 20, 12–20 (2012).

    Article  Google Scholar 

  11. Grätzel, M. Photovoltaic and photoelectrochemical conversion of solar energy. Phil. Tran. R. Soc. A 365, 993–1005 (2007).

    Article  Google Scholar 

  12. Dotan, H., Sivula, K., Graetzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of α-Fe2O3 electrodes using hydrogen peroxide (H2O2) as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011).

    Article  CAS  Google Scholar 

  13. Kay, A., Cesar, I. & Gratzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  CAS  Google Scholar 

  14. Spray, R. L. & Choi, K-S. Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chem. Mater. 21, 3701–3709 (2009).

    Article  CAS  Google Scholar 

  15. Wang, H., Deutsch, T. & Turner, J. A. Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91–F96 (2008).

    Article  CAS  Google Scholar 

  16. Jang, J. S., Yoon, K. Y., Xiao, X., Fan, F-R. F. & Bard, A. J. Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag–Fe2O3 nanocomposite and Sn doping. Chem. Mater. 21, 4803–4810 (2009).

    Article  CAS  Google Scholar 

  17. Thimsen, E., Leformal, F., Graetzel, M. & Warren, S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011).

    Article  CAS  Google Scholar 

  18. Beermann, N., Vayssieres, L., Lindquist, S. E. & Hagfeldt, A. Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147, 2456–2461 (2000).

    Article  CAS  Google Scholar 

  19. Kleiman-Shwarsctein, A., Hu, Y-S., Forman, A. J., Stucky, G. D. & McFarland, E. W. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900–15907 (2008).

    Article  CAS  Google Scholar 

  20. Lin, Y., Zhou, S., Sheehan, S. W. & Wang, D. Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133, 2398–2401 (2011).

    Article  CAS  Google Scholar 

  21. Van de Krol, R., Liang, Y. Q. & Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311–2320 (2008).

    Article  CAS  Google Scholar 

  22. Warren, S. C. & Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012).

    Article  CAS  Google Scholar 

  23. Dotan, H. et al. Resonant light trapping in ultrathin films for water splitting. Nature Mater. 12, 158–164 (2013).

    Article  CAS  Google Scholar 

  24. Brillet, J. et al. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photon. 6, 824–828 (2012).

    Article  CAS  Google Scholar 

  25. Lin, Y. et al. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012).

    Article  CAS  Google Scholar 

  26. Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    Article  CAS  Google Scholar 

  27. Li, L. et al. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12, 724–731 (2012).

    Article  CAS  Google Scholar 

  28. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T. & Bisquert, J. Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012).

    Article  CAS  Google Scholar 

  29. Marusak, L. A., Messier, R. & White, W. B. Optical absorption spectrum of hematite, α-Fe2O3 near IR to UV. J. Phys. Chem. Solids 41, 981–984 (1980).

    Article  CAS  Google Scholar 

  30. Tilley, S. D., Cornuz, M., Sivula, K. & Grätzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010).

    Article  CAS  Google Scholar 

  31. Cornuz, M., Grätzel, M. & Sivula, K. Preferential orientation in hematite films for solar hydrogen production via water splitting. Chem. Vap. Deposition 16, 291–295 (2010).

    Article  CAS  Google Scholar 

  32. Liu, H. H. et al. Three-dimensional orientation mapping in the transmission electron microscope. Science 332, 833–834 (2011).

    Article  CAS  Google Scholar 

  33. Dingley, D. J. Orientation imaging microscopy for the transmission electron microscope. Microchim. Acta 155, 19–29 (2006).

    Article  CAS  Google Scholar 

  34. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  35. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  36. Pike, G. E. & Seager, C. H. The dc voltage dependence of semiconductor grain-boundary resistance. J. Appl. Phys. 50, 3414–3422 (1979).

    Article  CAS  Google Scholar 

  37. Kennedy, J. H. & Frese, K. W. Jr Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  CAS  Google Scholar 

  38. Memming, R. Semiconductor Electrochemistry (Wiley VCH, 2001).

    Google Scholar 

  39. Gardner, R. F. G., Sweett, F. & Tanner, D. W. The electrical properties of alpha ferric oxide–II.: Ferric oxide of high purity. J. Phys. Chem. Solids 24, 1183–1186 (1963).

    Article  CAS  Google Scholar 

  40. Benjelloun, D. et al. Anisotropie des proprietes electriques de l’oxyde de fer Fe2O3α. Mater. Chem. Phys. 10, 503–518 (1984).

    Article  CAS  Google Scholar 

  41. Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950).

    Article  CAS  Google Scholar 

  42. Blatter, G. & Greuter, F. Carrier transport through grain boundaries in semiconductors. Phys. Rev. B 33, 3952–3966 (1986).

    Article  CAS  Google Scholar 

  43. Cesar, I., Sivula, K., Kay, A., Zboril, R. & Graetzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009).

    Article  CAS  Google Scholar 

  44. Mohapatra, S. K., John, S. E., Banerjee, S. & Misra, M. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009).

    Article  CAS  Google Scholar 

  45. Rangaraju, R. R., Panday, A., Raja, K. S. & Misra, M. Nanostructured anodic iron oxide film as photoanode for water oxidation. J. Phys. D 42, 135303 (2009).

    Article  Google Scholar 

  46. Sanchez, C., Sieber, K. D. & Somorjai, G. A. The photochemistry of niobium doped α-Fe2O3 . J. Electroanal. Chem. 252, 269–290 (1988).

    Article  CAS  Google Scholar 

  47. Gonçalves, R. H., Lima, B. H. R. & Leite, E. R. Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133, 6012–6019 (2011).

    Article  Google Scholar 

  48. Sivula, K. et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436–7444 (2010).

    Article  CAS  Google Scholar 

  49. Orton, J. W. & Powell, M. J. The Hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 43, 1263–1307 (1980).

    Article  Google Scholar 

  50. Coffey, D. C. & Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nature Mater. 5, 735–740 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this research by the European Commission (Nanostructured Photoelectrodes for Energy Conversion, NanoPEC, contract number 227179) and the Swiss Federal Office for Energy (PECHouse Competence Center, contract number 152933). M.G. thanks the European Research Council (ERC) for funding part of this work under the advanced research grant (ARC) 247404 ‘Mesolight’. We thank E. Thimsen, C. Koch, T. Mason, U. Wiesner, D. Gamelin, M. Hersam and R. van de Krol for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.C.W. conceived most experiments and performed the electrochemical and electron microscopy measurements. K.V. performed the C-AFM measurements, performed statistical analyses and, with F.S., analysed these results. A.R. and H.D. conceived and developed the photocurrent model. S.C.W. and C.H. analysed the DF-TEM data. C.M.L. measured the macroscopic electrical properties of electrodes. M.C. prepared electrodes. S.C.W. and M.G. analysed the electrochemical data. S.C.W. wrote most of the manuscript; K.V. wrote sections on C-AFM. All authors contributed to revisions.

Corresponding author

Correspondence to Scott C. Warren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, S., Voïtchovsky, K., Dotan, H. et al. Identifying champion nanostructures for solar water-splitting. Nature Mater 12, 842–849 (2013). https://doi.org/10.1038/nmat3684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing