Imaging currents in HgTe quantum wells in the quantum spin Hall regime

Abstract

The quantum spin Hall (QSH) state is a state of matter characterized by a non-trivial topology of its band structure, and associated conducting edge channels1,2,3,4,5. The QSH state was predicted6 and experimentally demonstrated7 to be realized in HgTe quantum wells. The existence of the edge channels has been inferred from local and non-local transport measurements in sufficiently small devices7,8,9. Here we directly confirm the existence of the edge channels by imaging the magnetic fields produced by current flowing in large Hall bars made from HgTe quantum wells. These images distinguish between current that passes through each edge and the bulk. On tuning the bulk conductivity by gating or raising the temperature, we observe a regime in which the edge channels clearly coexist with the conducting bulk, providing input to the question of how ballistic transport may be limited in the edge channels. Our results represent a versatile method for characterization of new QSH materials systems10,11,12,13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Current flows along the edge in the QSH regime.
Figure 2: Coexistence of edge channels and a conducting bulk.
Figure 3: Temperature dependence.
Figure 4: No signatures of edge conduction in a quantum well thinner than the critical thickness.

References

  1. 1

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Bernevig, B. A. & Zhang, S-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  Google Scholar 

  3. 3

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Article  Google Scholar 

  7. 7

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  8. 8

    Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Brüne, C. et al. Spin polarization of the quantum spin Hall edge states. Nature Phys. 8, 485–490 (2012).

    Article  Google Scholar 

  10. 10

    Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    Article  Google Scholar 

  11. 11

    Shitade, A. et al. Quantum spin Hall effect in a transition metal oxide Na2IrO3 . Phys. Rev. Lett. 102, 256403 (2009).

    Article  Google Scholar 

  12. 12

    Liu, C-X. et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 81, 041307 (2010).

    Article  Google Scholar 

  13. 13

    Knez, I., Du, R. R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article  Google Scholar 

  14. 14

    Wu, C., Bernevig, B. A. & Zhang, S-C. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 96, 106401 (2006).

    Article  Google Scholar 

  15. 15

    Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: Effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006).

    Article  Google Scholar 

  16. 16

    Delplace, P., Li, J. & Büttiker, M. Magnetic-field-induced localization in 2D topological insulators. Phys. Rev. Lett. 109, 246803 (2012).

    Article  Google Scholar 

  17. 17

    König, M. et al. The quantum spin Hall effect: Theory and experiment. J. Phys. Soc. Jpn 77, 031007 (2008).

    Article  Google Scholar 

  18. 18

    Maciejko, J., Qi, X-L. & Zhang, S-C. Magnetoconductance of the quantum spin Hall state. Phys. Rev. B 82, 155310 (2010).

    Article  Google Scholar 

  19. 19

    Väyrynen, J. I., Goldstein, M. & Glazman, L. I. Helical edge resistance introduced by charge puddles. Phys. Rev. Lett. 110, 216402 (2013).

    Article  Google Scholar 

  20. 20

    Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

    Article  Google Scholar 

  21. 21

    Schmidt, T. L., Rachel, S., Oppen von, F. & Glazman, L. I. Inelastic electron backscattering in a generic helical edge channel. Phys. Rev. Lett. 108, 156402 (2012).

    Article  Google Scholar 

  22. 22

    Väyrynen, J. I. & Ojanen, T. Electrical manipulation and measurement of spin properties of quantum spin Hall edge states. Phys. Rev. Lett. 106, 076803 (2011).

    Article  Google Scholar 

  23. 23

    Budich, J. C., Dolcini, F., Recher, P. & Trauzettel, B. Phonon-induced backscattering in helical edge states. Phys. Rev. Lett. 108, 086602 (2012).

    Article  Google Scholar 

  24. 24

    Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 053704 (2008).

    Article  Google Scholar 

  25. 25

    Baenninger, M. et al. Fabrication of samples for scanning probe experiments on quantum spin Hall effect in HgTe quantum wells. J. Appl. Phys. 112, 103713 (2012).

    Article  Google Scholar 

  26. 26

    Roth, B. J., Sepulveda, N. G. & Wikswo, J. P. Using a magnetometer to image a two-dimensional current distribution. J. Appl. Phys. 65, 361–372 (1989).

    Article  Google Scholar 

  27. 27

    König, M. et al. Spatially resolved study of backscattering in the quantum spin Hall state. Phys. Rev. X 3, 021003 (2013).

    Google Scholar 

  28. 28

    Ma, Y. et al. Direct imaging of quantum spin Hall edge states in HgTe quantum well. Preprint at http://arxiv.org/abs/1212.6441 (2012).

Download references

Acknowledgements

We thank S. C. Zhang, X. L. Qi and M. R. Calvo for valuable discussions, J. A. Bert and H. Noad for assistance with the experiment, G. Stewart for rendering Fig. 1a and M. E. Huber for assistance in SQUID design and fabrication. This work was financially supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515 (sample fabrication and scanning SQUID imaging of the QSH state in HgTe Hall bars), by the DARPA Meso project under grant no. N66001-11-1-4105 (MBE growth of the HgTe heterostructures) and by the Center for Probing the Nanoscale, an NSF NSEC, supported under grant no. PHY-0830228 (development of the scanning SQUID technique). The work at Würzburg was also supported by the German research foundation DFG (SPP 1285 Halbleiter Spintronik and DFG-JST joint research program Topological Electronics) and by the EU through the ERC-AG program (project 3-TOP). B.K. acknowledges support from FENA.

Author information

Affiliations

Authors

Contributions

K.C.N. and E.M.S. performed the SQUID measurements. K.C.N., E.M.S., B.K. and J.R.K. analysed the results with input from K.A.M., D.G-G., M.K. and M.B. M.B. fabricated the samples. C.A., P.L., C.B., H.B. and L.W.M. grew the quantum well structures. K.A.M., D.G-G. and L.W.M. guided the work. K.C.N. and K.A.M. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Katja C. Nowack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2391 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowack, K., Spanton, E., Baenninger, M. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nature Mater 12, 787–791 (2013). https://doi.org/10.1038/nmat3682

Download citation

Further reading