Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst

Abstract

The coarsening of catalytically active metal clusters is often accelerated by the presence of gases, but the role played by gas molecules is difficult to ascertain and varies from system to system1,2,3,4,5,6,7,8. We use scanning tunnelling microscopy to follow the CO-induced coalescence of Pd adatoms supported on the Fe3O4(001) surface at room temperature, and find Pd-carbonyl species to be responsible for mobility in this system. Once these reach a critical density, clusters nucleate; subsequent coarsening occurs through cluster diffusion and coalescence. Whereas CO induces the mobility in the Pd/Fe3O4 system, surface hydroxyls have the opposite effect. Pd atoms transported to surface OH groups are no longer susceptible to carbonyl formation and remain isolated. Following the evolution from well-dispersed metal adatoms into clusters, atom-by-atom, allows identification of the key processes that underlie gas-induced mass transport.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The Fe3O4(001) surface.
Figure 2: CO-induced mobility of one Pd adatom.
Figure 3: Formation of a stable Pd adatom at a surface hydroxyl.
Figure 4: The CO-induced formation of a large Pd cluster.

References

  1. Thiel, P. A., Shen, M., Liu, D-J. & Evans, J. W. Adsorbate-enhanced transport of metals on metal surfaces: Oxygen and sulfur on coinage metals. J. Vac. Sci. Technol. A 28, 1285–1298 (2010).

    CAS  Article  Google Scholar 

  2. Ling, W. L. et al. Enhanced self-diffusion on Cu(111) by trace amounts of S: Chemical-reaction-limited kinetics. Phys. Rev. Lett. 93, 166101 (2004).

    CAS  Article  Google Scholar 

  3. Feibelman, P. J. Formation and diffusion of S-decorated Cu clusters on Cu(111). Phys. Rev. Lett. 85, 606–609 (2000).

    CAS  Article  Google Scholar 

  4. Harris, P. J. F. Growth and structure of supported metal catalyst particles. Int. Mater. Rev. 40, 97–115 (1995).

    CAS  Article  Google Scholar 

  5. Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A 212, 17–60 (2001).

    CAS  Article  Google Scholar 

  6. Chaâbane, N., Lazzari, R., Jupille, J., Renaud, G. & Avellar Soares, E. CO-induced scavenging of supported Pt nanoclusters: A GISAXS study. J. Phys. Chem. C 116, 23362–23370 (2012).

    Article  Google Scholar 

  7. Simonsen, S. B. et al. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132, 7968–7975 (2010).

    CAS  Article  Google Scholar 

  8. Rasmussen, D. B. et al. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT. J. Catal. 293, 205–214 (2012).

    CAS  Article  Google Scholar 

  9. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size- dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    CAS  Article  Google Scholar 

  10. Moulijn, J. A., van Diepen, A. E. & Kapteijn, F. Catalyst deactivation: is it predictable? What to do? Appl. Catal. A 212, 3–16 (2001).

    CAS  Article  Google Scholar 

  11. Wynblatt, P. & Gjostein, N. A. Supported metal crystallites. Prog. Solid State Chem. 9, 21–58 (1975).

    CAS  Article  Google Scholar 

  12. Brown, M. A. et al. Oxidation of Au by surface OH: Nucleation and electronic structure of gold on hydroxylated MgO(001). J. Am. Chem. Soc. 133, 10668–10676 (2011).

    CAS  Article  Google Scholar 

  13. Starr, D., Shaikhutdinov, S. & Freund, H-J. Gold supported on oxide surfaces: Environmental effects as studied by STM. Top. Catal. 36, 33–41 (2005).

    CAS  Article  Google Scholar 

  14. Pereira, E. B. & Martin, G-A. Morphology changes and deactivation of alkali-promoted Ni/SiO2 catalysts during carbon monoxide hydrogenation. Appl. Catal. A 115, 135–146 (1994).

    CAS  Article  Google Scholar 

  15. Horch, S. et al. Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134–136 (1999).

    CAS  Article  Google Scholar 

  16. Jak, M. J. J., Konstapel, C., van Kreuningen, A., Verhoeven, J. & Frenken, J. W. M. Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2(110). Surf. Sci. 457, 295–310 (2000).

    CAS  Article  Google Scholar 

  17. Challa, S. R. et al. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening. J. Am. Chem. Soc. 133, 20672–20675 (2011).

    CAS  Article  Google Scholar 

  18. Datye, A. K., Xu, Q., Kharas, K. C. & McCarty, J. M. Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism? Catal. Today 111, 59–67 (2006).

    CAS  Article  Google Scholar 

  19. Yang, F., Chen, M. S. & Goodman, D. W. Sintering of Au particles supported on TiO2(110) during CO oxidation. J. Phys. Chem. C 113, 254–260 (2008).

    Google Scholar 

  20. Novotný, Z. et al. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 108, 216103 (2012).

    Article  Google Scholar 

  21. Pentcheva, R. et al. Jahn–Teller stabilization of a ‘polar’ metal oxide surface: Fe3O4(001). Phys. Rev. Lett. 94, 126101 (2005).

    CAS  Article  Google Scholar 

  22. Parkinson, G. S., Novotny, Z., Jacobson, P., Schmid, M. & Diebold, U. Room temperature water splitting at the surface of magnetite. J. Am. Chem. Soc. 133, 12650–12655 (2011).

    CAS  Article  Google Scholar 

  23. Parkinson, G. S. et al. Semiconductor-half metal transition at the Fe3O4(001) surface upon hydrogen adsorption. Phys. Rev. B 82, 125413 (2010).

    Article  Google Scholar 

  24. Lodziana, Z. Surface Verwey transition in magnetite. Phys. Rev. Lett. 99, 206402 (2007).

    Article  Google Scholar 

  25. Xu, L., Henkelman, G., Campbell, C. T. & Jónsson, H. Small Pd clusters, up to the tetramer at least, are highly mobile on the MgO(100) surface. Phys. Rev. Lett. 95, 146103 (2005).

    Article  Google Scholar 

  26. Starr, D. E. et al. Heat of adsorption of Cu and Pb on hydroxyl-covered MgO(100). Surf. Sci. 515, 13–20 (2002).

    CAS  Article  Google Scholar 

  27. Novotny, Z. et al. Probing the surface phase diagram of Fe3O4(001) towards the Fe-rich limit: Evidence for progressive reduction of the surface. Phys. Rev. B 87, 195410–195417 (2013).

    Article  Google Scholar 

  28. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Lutz, J. WIEN2k, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Univ. Wien, Austria, 2001).

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  30. Anisimov, V. I., Solovyev, I. V., Korotin, M. A., Czyayk, M. T. & Sawatzky, G. A. Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16929 (1993).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported as part of the Center for Atomic-Level Catalyst Design, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number #DE-SC0001058. The authors acknowledge Z. Mao and T. J. Liu (Tulane University) for the synthetic sample used in this work. G.S.P. acknowledges support from the Austrian Science Fund project number P24925-N20. R.K. and J.P. acknowledge stipends from the TU Vienna doctoral college CATMAT.

Author information

Authors and Affiliations

Authors

Contributions

G.S.P. designed the experiments, analysed data and wrote the paper; Z.N., G.A. and J.P. performed the experiments and analysed data; R.K. and P.B. performed and analysed the theoretical calculations; M.S. and U.D. designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Gareth S. Parkinson or Ulrike Diebold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 645 kb)

Supplementary Information

Supplementary Movie S1 (MOV 347 kb)

Supplementary Information

Supplementary Movie S2 (MOV 532 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parkinson, G., Novotny, Z., Argentero, G. et al. Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nature Mater 12, 724–728 (2013). https://doi.org/10.1038/nmat3667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3667

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing