Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films

Abstract

The record superconducting transition temperature (Tc) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its Tc, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The electronic structure of FeSe films as a function of thickness.
Figure 2: Electronic structure evolution during the growth of 1 ML FeSe.
Figure 3: Temperature dependence of the electronic structure for the 50 ML FeSe film.
Figure 4: Thickness dependence of the SDW behaviour for the multi-layer FeSe films.
Figure 5: Phase diagram of FeSe.

Similar content being viewed by others

References

  1. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  2. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Sewith superconductivity at 36.7 K under pressure. Nature Mater. 8, 630–633 (2009).

    Article  CAS  Google Scholar 

  3. Ma, F. et al. First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear AFM order. Phys. Rev. Lett. 102, 177003 (2009).

    Article  Google Scholar 

  4. Li, S. L. et al. First-order magnetic and structural phase transition in Fe1+ySexTe1−x . Phys. Rev. B 79, 054503 (2009).

    Article  Google Scholar 

  5. Bao, W. et al. Tunable (δ π,δ π) -type AFM order in α-Fe(Te,Se) superconductors. Phys. Rev. Lett. 102, 247001 (2009).

    Article  Google Scholar 

  6. Wang, Q. Y. et al. Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  7. Liu, D.F. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nature Commun. 3, 931 (2012).

    Article  Google Scholar 

  8. He, S. L. et al. Phase diagram and high temperature superconductivity at 65K in tuning carrier concentration of single-layer FeSe films. Nature Mater.http://dx.doi.org/10.1038/nmat3648 (2012).

  9. Xiang, Y. Y. et al. High-temperature superconductivity at the FeSe/SrTiO3 interface. Phys. Rev. B 86, 134508 (2012).

    Article  Google Scholar 

  10. Zhang, Y. et al. Nodeless superconducting gap in AxFe2Se2 (A = K,Cs) revealed by angle-resolved photoemission spectroscopy. Nature Mater. 10, 273–277 (2011).

    Article  CAS  Google Scholar 

  11. Yang, L. X. et al. Electronic structure and unusual exchange splitting in the spin-density wave state of BaFe2As2 parent compound of iron based superconductors. Phys. Rev. Lett. 102, 107002 (2009).

    Article  CAS  Google Scholar 

  12. Zhou, B. et al. High-resolution angle-resolved photoemission spectroscopy study of the electronic structure of EuFe2As2 . Phys. Rev. B 81, 155124 (2010).

    Article  Google Scholar 

  13. Zvanut, M. E. et al. An annealing study of an oxygen vacancy related defect in SrTiO3 substrates. J. Appl. Phys. 104, 064122 (2008).

    Article  Google Scholar 

  14. Szot, K., Speier, W., Carius, R., Zastrow, U. & Beyer, W. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3 . Phys. Rev. Lett. 88, 075508 (2002).

    Article  CAS  Google Scholar 

  15. Tamai, A. et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 097002 (2010).

    Article  CAS  Google Scholar 

  16. He, C. et al. Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 105, 117002 (2010).

    Article  CAS  Google Scholar 

  17. Zhang, Y. et al. Unusual doping dependence of the electronic structure and coexistence of spin-density-wave and superconductor phase in single crystalline Sr1−xKxFe2As2 . Phys. Rev. Lett. 102, 127003 (2009).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs. Phys. Rev. B 85, 085121 (2012).

    Article  Google Scholar 

  19. Zhang, Y. et al. Strong correlations and spin-density-wave phase induced by a massive spectral weight redistribution in α-Fe1.06Te. Phys. Rev. B 82, 165113 (2010).

    Article  Google Scholar 

  20. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    Article  CAS  Google Scholar 

  21. Yi, M. et al. Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs. New J. Phys. 14, 073019 (2012).

    Article  Google Scholar 

  22. Yin, Z. P., Haule, K. & Kotilar, G. Magnetism and charge dynamics in iron pnictides. Nature Phys. 7, 294–297 (2011).

    Article  CAS  Google Scholar 

  23. Yin, Z. P., Haule, K. & Kotilar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

    Article  CAS  Google Scholar 

  24. Jiang, J. et al. The distinct in-plane resistivity anisotropy in the nematic states of detwinned NaFeAs and FeTe single crystals: Evidences for Hund’s rule metal. Preprint at http://arxiv.org/abs/1210.0397 (2012).

  25. Yi, M. et al. Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across the spin density wave transition. Phys. Rev. B 80, 174510 (2009).

    Article  Google Scholar 

  26. Ge, Q. Q. et al. Anisotropic but nodeless superconducting gap in the presence of spin-density wave in ion-pnictide superconductor NaFe1−xCoxAs. Phys. Rev. X 3, 011020 (2013).

    Google Scholar 

  27. Wen, Y. C. et al. Gap opening and orbital modification of superconducting FeSe above the structural distortion. Phys. Rev. Lett. 108, 267002 (2012).

    Article  Google Scholar 

  28. Kasahara, S. et al. Evolution from non-Fermi to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductor. Phys. Rev. B 81, 184519 (2010).

    Article  Google Scholar 

  29. Albenque, F. R. et al. Hole and electron contributions to the transport properties of Ba(Fe1−xRux)2As2 single crystals. Phys. Rev. B 81, 224503 (2010).

    Article  Google Scholar 

  30. Matthew, B. L. et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nature Mater. 12, 15–19 (2013).

    Article  Google Scholar 

  31. Sun, L. L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    Article  CAS  Google Scholar 

  32. Chen, F. et al. Electronic identification of the parental phase and mesoscopic phase separation of KxFe2−ySe2 superconductors. Phys. Rev. X 1, 021020 (2011).

    Google Scholar 

  33. Liu, K., Lu, Z. Y. & Xiang, T. Atomic and electronic structures of monolayer and bilayer thin films on SrTiO3(001): First-principles study. Phys. Rev. B 85, 235123 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Q. Xue, X. Chen and W. Li for sharing their thin film growth procedures, Z. Lu for the file of the FeSe band structure, Y. Zhang and F. Yang for AFM characterization of the STO substrate, and enlightening discussions with C. Varma. This work is supported in part by the National Science Foundation of China, and the National Basic Research Program of China (973 Program) under the grant Nos. 2012CB921400,2011CB921802, 2011CBA00112, 2011CB309703, 91026016.

Author information

Authors and Affiliations

Authors

Contributions

S.T., M.X., X.X., D.X., H.X. and R.P. built the MBE system and grew the films, S.T., Y.Z., Z.Y., F.C., Q.F., J.J. and B.X. performed ARPES measurements. S.T., D.F., Y.Z., Z.Y., T.Z., T.X. and J.H. analysed the ARPES data. D.F. wrote the paper. D.F. and X.L. are responsible for the infrastructure, project direction and planning.

Corresponding author

Correspondence to Donglai Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S., Zhang, Y., Xia, M. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nature Mater 12, 634–640 (2013). https://doi.org/10.1038/nmat3654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing