Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general approach to DNA-programmable atom equivalents

Abstract

Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles’ size, shape, composition and position can be independently controlled1,2,3,4,5,6,7. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide–alkyne cycloaddition8 (also known as copper-free azide–alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synthesis scheme for nanoparticle-based PAEs.
Figure 2: Characterization of fcc and bcc colloidal superlattices assembled from QD-, DAu- and Fe3O4-PAEs.
Figure 3: Characterization of superlattices assembled from Fe3O4-PAEs of different size.
Figure 4: Binary superlattices assembled from arbitrary combinations of QD-, DAu- and Fe3O4-PAEs.

References

  1. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  2. Mirkin, C. A. The polyvalent gold nanoparticle conjugate-materials synthesis, biodiagnostics, and intracellular gene regulation. Mater. Res. Soc. Bull. 35, 532–539 (2010).

    CAS  Article  Google Scholar 

  3. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Article  Google Scholar 

  4. Nykypanchuk, D., Maye, M. M., van der Lelie, D & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Article  Google Scholar 

  5. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Article  Google Scholar 

  6. Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotech. 5, 116–120 (2010).

    CAS  Article  Google Scholar 

  7. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    CAS  Article  Google Scholar 

  8. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted 3+2 azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    CAS  Article  Google Scholar 

  9. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  10. Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    CAS  Google Scholar 

  11. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    CAS  Article  Google Scholar 

  12. Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).

    CAS  Article  Google Scholar 

  13. Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393–403 (2006).

    CAS  Article  Google Scholar 

  14. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS  Article  Google Scholar 

  15. Talapin, D. V., Lee, J. S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS  Article  Google Scholar 

  16. Macfarlane, R. J. et al. Establishing the design rules for DNA-mediated colloidal crystallization. Angew. Chem. Int. Ed. 49, 4589–4592 (2010).

    CAS  Article  Google Scholar 

  17. Cutler, J. I., Zheng, D., Xu, X. Y., Giljohann, D. A. & Mirkin, C. A. Polyvalent oligonucleotide iron oxide nanoparticle ‘Click’ conjugates. Nano Lett. 10, 1477–1480 (2010).

    CAS  Article  Google Scholar 

  18. Sun, D. Z. & Gang, O. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA. J. Am. Chem. Soc. 133, 5252–5254 (2011).

    CAS  Article  Google Scholar 

  19. Tikhomirov, G. et al. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nature Nanotech. 6, 485–490 (2011).

    CAS  Article  Google Scholar 

  20. Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K. & Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    CAS  Article  Google Scholar 

  21. Pellegrino, T. et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004).

    CAS  Article  Google Scholar 

  22. Di Corato, R. et al. Water solubilization of hydrophobic nanocrystals by means of poly(maleic anhydride-alt-1-octadecene). J. Mater. Chem. 18, 1991–1996 (2008).

    CAS  Article  Google Scholar 

  23. Shtykova, E. V. et al. Hydrophilic monodisperse magnetic nanoparticles protected by an amphiphilic alternating copolymer. J. Phys. Chem. C 112, 16809–16817 (2008).

    CAS  Article  Google Scholar 

  24. Lin, C. A. J. et al. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4, 334–341 (2008).

    CAS  Article  Google Scholar 

  25. Yu, W. W. et al. Forming biocompatible and non-aggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 129, 2871–2879 (2007).

    CAS  Article  Google Scholar 

  26. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    CAS  Article  Google Scholar 

  27. Macfarlane, R. J. et al. Assembly and organization processes in DNA-directed colloidal crystallization. Proc. Natl Acad. Sci. USA 106, 10493–10498 (2009).

    CAS  Article  Google Scholar 

  28. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    CAS  Article  Google Scholar 

  29. Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).

    CAS  Article  Google Scholar 

  30. Hill, H. D. et al. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 8, 2341–2344 (2008).

    CAS  Article  Google Scholar 

  31. Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges the support of DoD/NSSEFF/NPS Awards N00244-09-1-0012 and N00244-09-1-0071, AFOSR Awards FA9550-11-1-0275, FA9550-12-1-0280, and FA9550-09-1-0294, the National Science Foundation’s MRSEC programme (DMR-0520513) at the Materials Research Center of Northwestern University, the Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office (MTO) under Award Nos HR0011-13-2-0002, HR0011-13-2-0018 and N66001-11-1-4189, and the Non-equilibrium Energy Research Center (NERC), an Energy Frontier Research Center funded by the US DOE, Office of Science, Office of Basic Energy Sciences Award DE-SC0000989 (nanoparticle synthesis). Any opinions, findings, and conclusion or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the funding agencies, and no official endorsement should be inferred. R.J.M. acknowledges a Ryan Fellowship from Northwestern University. K.L.Y. and E.A. acknowledge National Defense Science and Engineering Graduate Research Fellowships. C.H.J.C. acknowledges a postdoctoral research fellowship from the Croucher Foundation. L.H. acknowledges the HHMI for support from an international student research fellowship. SAXS experiments were carried out at the Dupont–Northwestern–Dow Collaborative Access Team beam line at the Advanced Photon Source (APS), Argonne National Laboratory, and use of the APS was supported by the DOE (DE-AC02-06CH11357). The electron microscopy work was performed at the Biological Imaging Facility (BIF) and the Electron Probe Instrumentation Center (EPIC) at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., R.J.M. and C.A.M. initiated the concepts. C.Z. and R.J.M. designed the experiments. C.Z. conducted the experiments. C.Z., R.J.M. and C.A.M. wrote the manuscript. All authors contributed to data collection, data analysis and manuscript preparation.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4092 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, C., Macfarlane, R., Young, K. et al. A general approach to DNA-programmable atom equivalents. Nature Mater 12, 741–746 (2013). https://doi.org/10.1038/nmat3647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3647

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing