Memory effect in a lithium-ion battery



Memory effects are well known to users of nickel–cadmium and nickel–metal-hydride batteries. If these batteries are recharged repeatedly after being only partially discharged, they gradually lose usable capacity owing to a reduced working voltage. Lithium-ion batteries, in contrast, are considered to have no memory effect. Here we report a memory effect in LiFePO4—one of the materials used for the positive electrode in Li-ion batteries—that appears already after only one cycle of partial charge and discharge. We characterize this memory effect of LiFePO4 and explain its connection to the particle-by-particle charge/discharge model. This effect is important for most battery uses, as the slight voltage change it causes can lead to substantial miscalculations in estimating the state of charge of batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Demonstration of a memory effect in LiFePO4 at a SOC of 50%.
Figure 2: The memory effect in LiFePO4 at several SOCs.
Figure 3: Charge and discharge curve of LiFePO4 and Li4Ti5O12 under memory-effect conditions at SOCs of 30 and 50%.
Figure 4: GITT and constant-current measurements of LiFePO4 and Li4Ti5O12 between 2.4 and 4.4 V versus Li/Li+ for LiFePO4 and 1.0 and 2.1 V for Li4Ti5O12, respectively.
Figure 5: Schematic diagram of the chemical-potential condition of many particles of LiFePO4 during GITT measurement, the memory-writing cycle and the memory-releasing cycle.


  1. 1

    Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 100, 101–106 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Pistoia, G. Batteries for Portable Devices (Elsevier, 2005).

    Google Scholar 

  3. 3

    Vincent, C. A. & Scrosati, B. Modern Batteries (Elsevier, 1997).

    Google Scholar 

  4. 4

    Barnard, R., Crickmore, G. T., Lee, J. A. & Tye, F. L. The cause of residual capacity in nickel oxyhydroxide electrodes. J. Appl. Electrochem. 10, 61–70 (1980).

    CAS  Article  Google Scholar 

  5. 5

    Davolio, G. & Soragni, E. The ‘memory effect’ on nickel oxide electrodes: Electrochemical and mechanical aspects. J. Appl. Electrochem. 28, 1313–1319 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Huggins, R. A. Mechanism of the memory effect in ‘nickel’ electrodes. Solid State Ion. 177, 2643–2646 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Sato, Y., Takeuchi, S. & Kobayakawa, K. Cause of the memory effect observed in alkaline secondary batteries using nickel electrode. J. Power Sources 93, 20–24 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Barbarisi, O., Vasca, F. & Glielmo, L. State of charge Kalman filter estimator for automotive batteries. Control Eng. Practice 14, 267–275 (2006).

    Article  Google Scholar 

  9. 9

    Hu, Y. & Yurkovich, S. Battery cell state-of-charge estimation using linear parameter varying system techniques. J. Power Sources 198, 338–350 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Sleigh, A. K., Murray, J. J. & McKinnon, W. R. Memory effects due to phase conversion and hysteresis in Li/Li x MnO2 cells. Electrochim. Acta 36, 1469–1474 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Padhi, A. K., Najundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Yamada, A., Chung, S. C. & Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Scharner, S., Weppner, W. & Schmid-Beurmann, P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J. Electrochem. Soc. 146, 857–861 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Jiang, J. & Dahn, J. R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem. Commun. 6, 39–43 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Jiang, J., Chen, J. & Dahn, J. R. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry. J. Electrochem. Soc. 151, A2082–A2087 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Reale, P. et al. A safe, low-cost, and sustainable lithium-ion polymer battery. J. Electrochem. Soc. 151, A2137–A2142 (2004).

    Article  Google Scholar 

  18. 18

    Shim, J. & Striebel, K. A. Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries. J. Power Sources 119–121, 934–937 (2003).

    Article  Google Scholar 

  19. 19

    Park, G. et al. The study of electrochemical properties and lithium deposition of graphite at low temperature. J. Power Sources 199, 293–299 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Bergveld, H. J. et al. Encyclopedia of Electrochemical Power Sources: Adaptive State-of-Charge Determination (Elsevier, 2009).

    Google Scholar 

  21. 21

    Ng, K. S. et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 86, 1506–1511 (2009).

    CAS  Article  Google Scholar 

  22. 22

    He, H. et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39, 310–318 (2012).

    Article  Google Scholar 

  23. 23

    Yazami, R. & Reynier, Y. Thermodynamics and crystal structure anomalies in lithium-intercalated graphite. J. Power Sources 153, 312–318 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977).

    CAS  Article  Google Scholar 

  25. 25

    Striebel, K. et al. The development of low cost LiFePO4-based high power lithium-ion batteries. J. Power Sources 146, 33–38 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Guo, X. et al. The preparation of LiFePO4/C cathode by a modified carbon-coated method. J. Electrochem. Soc. 156, A787–A790 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Joachin, H., Kaun, T. D., Zaghib, K. & Prakash, J. Electrochemical and Thermal studies of LiFePO4 cathode in lithium-ion cells. ECS Trans. 6, 11–16 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Kao, Y. et al. Overpotential-dependent phase transformation pathways in lithium iron phosphate battery electrodes. Chem. Mater. 22, 5845–5855 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Dreyer, W. et al. The thermodynamic origin of hysteresis in insertion batteries. Nature Mater. 9, 448–453 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Andersson, A. S. & Thomas, J. O. The source of first-cycle capacity loss in LiFePO4 . J. Power Sources 97–98, 498–502 (2005).

    Google Scholar 

  31. 31

    Laffont, L. et al. Study of the LiFePO4/FePO4 two-phase system by High-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520–5529 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Ramana, C. V., Mauger, A., Gendron, F., Julien, C. M. & Zaghib, K. Study of the Li-insertion/extraction process in LiFePO4/FePO4 . J. Power Sources 187, 555–564 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater. 7, 665–671 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Dreyer, W., Guhlke, C. & Robert, H. The behavior of a many-particle electrode in a lithium-ion battery. Physica D 240, 1008–1019 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4 . Nature Mater. 10, 587–590 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Gong, Z. & Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 4, 3223–3242 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Novák, P., Scheifele, W., Joho, F. & Haas, O. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc. 142, 2544–2550 (1995).

    Article  Google Scholar 

  38. 38

    Kondo, H. et al. Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance. J. Power Sources 174, 1131–1137 (2007).

    CAS  Article  Google Scholar 

Download references


We would like to thank C. Villevieille for experimental support and advice, M. Heß for helpful discussions and comments, S. Urbonaite for valuable suggestions on the manuscript and H. Kaiser and C. Junker for all-round technical assistance.

Author information




T.S. conceived and carried out the experiments, analysed the data and wrote the paper, Y.U. directed this work, and P.N. discussed and directed this work.

Corresponding authors

Correspondence to Tsuyoshi Sasaki or Petr Novák.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 955 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sasaki, T., Ukyo, Y. & Novák, P. Memory effect in a lithium-ion battery. Nature Mater 12, 569–575 (2013).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing