Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling a spillover pathway with the molecular cork effect

Abstract

Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials1,2,3,4,5,6,7. The spillover of hydrogen is notoriously hard to detect or control1,2,4,5,6. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a ‘molecular cork’ effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage system1,2,4,5,6,8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preferred binding sites for hydrogen and CO.
Figure 2: The molecular cork effect.
Figure 3: KMC simulations of the molecular cork effect.
Figure 4: The molecular cork effect in a hydrogenation reaction.

Similar content being viewed by others

References

  1. Conner, W. C. & Falconer, J. L. Spillover in heterogenous catalysis. Chem. Rev. 95, 759–788 (1995).

    Article  CAS  Google Scholar 

  2. Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 38, 73–82 (2009).

    Article  CAS  Google Scholar 

  3. Jung, K-D. & Bell, A. T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2 . J. Catal. 193, 207–223 (2000).

    Article  CAS  Google Scholar 

  4. Cheng, H., Chen, L., Cooper, A. C., Sha, X. & Pez, G. P. Hydrogen spillover in the context of hydrogen storage using solid-state materials. Energy Environ. Sci. 1, 338–354 (2008).

    Article  CAS  Google Scholar 

  5. Wang, L. & Yang, R. T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catal. Rev. Sci. Eng. 52, 411–461 (2010).

    Article  CAS  Google Scholar 

  6. Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012).

    Article  CAS  Google Scholar 

  7. Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

    Article  CAS  Google Scholar 

  8. Groß, A. Hydrogen on metal surfaces: Forever young. Surf. Sci. 606, 690–691 (2012).

    Article  Google Scholar 

  9. Wei, J., Ji, H., Guo, W., Nevidomskyy, A. H. & Natelson, D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nature Nanotech. 7, 357–362 (2012).

    Article  CAS  Google Scholar 

  10. Eliaz, N., Eliezer, D. & Olson, D. L. Hydrogen-assisted processing of materials. Mater. Sci. Eng. A 289, 41–53 (2000).

    Article  Google Scholar 

  11. Shegai, T., Johansson, P., Langhammer, C. & Käll, M. Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas. Nano Lett. 12, 2464–2469 (2012).

    Article  CAS  Google Scholar 

  12. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogenous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  Google Scholar 

  13. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater. 3, 810–815 (2004).

    Article  CAS  Google Scholar 

  14. Chopra, I. S., Chaudhuri, S., Veyan, J. F. & Chabal, Y. J. Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. Nature Mater. 10, 884–889 (2011).

    Article  CAS  Google Scholar 

  15. Wittstock, A., Zielasek, V., Biener, J., Friend, C. M. & Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319–322 (2010).

    Article  CAS  Google Scholar 

  16. Li, Y. & Yang, R. T. Hydrogen storage in metal–organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–81377 (2006).

    Article  CAS  Google Scholar 

  17. Hahn, C., Shan, J., Groot, I. M. N., Kleyn, A. W. & Juurlink, L. B. F. Selective poisoning of active sites for D2 dissociation on platinum. Catal. Today 154, 85–91 (2010).

    Article  CAS  Google Scholar 

  18. Vang, R. T. et al. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nature Mater. 4, 160–162 (2005).

    Article  CAS  Google Scholar 

  19. Gambardella, P. et al. Oxygen dissociation at Pt steps. Phys. Rev. Lett. 87, 0561031 (2001).

    Article  Google Scholar 

  20. Tierney, H. L., Baber, A. E., Kitchin, J. R. & Sykes, E. C. H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Phys. Rev. Lett. 103, 2461021 (2009).

    Article  Google Scholar 

  21. Bellisario, D. O. et al. Importance of kinetics in surface alloying: A comparison of the diffusion pathways of Pd and Ag atoms on Cu(111). J. Phys. Chem. C 113, 12863–12869 (2009).

    Article  CAS  Google Scholar 

  22. Tierney, H. L., Baber, A. E. & Sykes, E. C. H. Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surfaces alloys. J. Phys. Chem. C 113, 7246–7250 (2009).

    Article  CAS  Google Scholar 

  23. Aaen, A. B., Lægsgaard, E., Ruban, A. V. & Stensgaard, I. Submonolayer growth of Pd on Cu(111) studied by scanning tunnelling microscopy. Surf. Sci. 408, 43–56 (1998).

    Article  CAS  Google Scholar 

  24. Tolman, R. C. The principle of microscopic reversibility. Proc. Natl Acad. Sci. USA 11, 436–439 (1925).

    Article  CAS  Google Scholar 

  25. Hager, T., Rauscher, H. & Behm, R. J. Interaction of CO with PdCu surface alloys supported on Ru(0001). Surf. Sci. 558, 181–194 (2004).

    Article  CAS  Google Scholar 

  26. Illas, F. et al. Interaction of CO and NO with PdCu (111) surfaces. J. Phys. Chem. B 102, 8017–8023 (1998).

    Article  CAS  Google Scholar 

  27. Sakong, S., Mosch, C. & Groß, A. CO adsorption on Cu-Pd alloy surfaces: Ligand versus ensemble effects. Phys. Chem. Chem. Phys. 9, 2216–2225 (2007).

    Article  CAS  Google Scholar 

  28. Lopez, N. & Nørskov, J. K. Synergetic effects in CO adsorption on Cu–Pd(111) alloys. Surf. Sci. 477, 59–75 (2001).

    Article  CAS  Google Scholar 

  29. Johnson, A. D., Daley, S. P., Utz, A. L. & Ceyer, S. T. The chemistry of bulk hydrogen: reaction of hydrogen embedded in nickel with adsorbed CH3 . Science 257, 223–225 (1990).

    Article  Google Scholar 

  30. Stamatakis, M. & Vlachos, D. G. A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. J. Chem. Phys. 134, 214115 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Division of Chemical Sciences, Office of Basic Energy Sciences, Condensed Phase and Interfacial Molecular Science Program, US Department of Energy under Grant No. FG02-10ER16170. (M.D.M, G.K., E.A.L. and E.C.H.S.) and NSF (CHE-0844343) for partial support (M.B.B. and C.J.M.). E.A.L. acknowledges the Department of Education for a GAANN fellowship. A.D.J. acknowledges the National Science Foundation for a graduate fellowship. M.S. acknowledges the use of the UCL Legion High Performance Computing Facility (Legion@UCL) and associated support services, as well as support from the Thomas Young Centre: the London Centre for Theory and Simulation of Materials, for the completion of the theoretical part of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.D.M., A.D.J., M.B.B., E.A.L., C.J.M. and G.K. performed the experiments. M.D.M., A.D.J., G.K. and E.C.H.S. performed the data analysis. M.S. performed the KMC simulations and post-processing. The paper was written by M.D.M., G.K., M.S. and E.C.H.S.

Corresponding author

Correspondence to E. Charles H. Sykes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcinkowski, M., Jewell, A., Stamatakis, M. et al. Controlling a spillover pathway with the molecular cork effect. Nature Mater 12, 523–528 (2013). https://doi.org/10.1038/nmat3620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3620

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing