Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metre-long cell-laden microfibres exhibit tissue morphologies and functions

Abstract

Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core–shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem cells can be fabricated, and that the microfibres reconstitute intrinsic morphologies and functions of living tissues. We also show that these functional fibres can be assembled, by weaving and reeling, into macroscopic cellular structures with various spatial patterns. Moreover, fibres encapsulating primary pancreatic islet cells and transplanted through a microcatheter into the subrenal capsular space of diabetic mice normalized blood glucose concentrations for about two weeks. These microfibres may find use as templates for the reconstruction of fibre-shaped functional tissues that mimic muscle fibres, blood vessels or nerve networks in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of a metre-long cell-laden microfibre.
Figure 2: Intrinsic cellular morphologies and functions of cell fibres using primary cells.
Figure 3: Differentiation induction of primary NSC–PCol fibres.
Figure 4: Fibre-based assembly of higher-order 3D macroscopic cellular structures.
Figure 5: Transplantation of primary islet cell fibres into diabetic mice.

Similar content being viewed by others

References

  1. Dzenis, Y. Spinning continuous fibers for nanotechnology. Science 304, 1917–1919 (2004).

    Article  CAS  Google Scholar 

  2. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  3. Mouritz, A. P., Bannister, M. K., Falzon, P. J. & Leong, K. H. Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A 30, 1445–1461 (1999).

    Article  Google Scholar 

  4. Quinn, B. Textiles in architecture. Archit. Design 76, 22–26 (2006).

    Article  Google Scholar 

  5. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med. 15, 1219–1223 (2009).

    Article  CAS  Google Scholar 

  6. Wedeen, V. J. et al. The geometric structure of the brain fiber pathways. Science 335, 1628–1634 (2012).

    Article  CAS  Google Scholar 

  7. Martini, F. H., Nath, J. L. & Bartholomew, E. F. Fundamentals of Anatomy & Physiology 9th edn (Pearson Education, 2012).

    Google Scholar 

  8. Shin, S. et al. ‘On the fly’ continuous generation of alginate fibers using a microfluidic device. Langmuir 23, 9104–9108 (2007).

    Article  CAS  Google Scholar 

  9. Lee, K. H., Shin, S. J., Park, Y. & Lee, S. H. Synthesis of cell-laden alginate hollow fibers using microfluidic chip and microvascularized tissue-engineering applications. Small 5, 1264–1268 (2009).

    Article  CAS  Google Scholar 

  10. Sugiura, S. et al. Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array. Lab Chip 8, 1255–1257 (2008).

    Article  CAS  Google Scholar 

  11. Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nature Mater. 10, 877–883 (2011).

    Article  CAS  Google Scholar 

  12. Yamada, M., Sugaya, S., Naganuma, Y. & Seki, M. Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter 8, 3122–3130 (2012).

    Article  CAS  Google Scholar 

  13. Raof, N. A., Padgen, M. R., Gracias, A. R., Bergkvist, M. & Xie, Y. One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands. Biomaterials 32, 4498–4505 (2011).

    Article  Google Scholar 

  14. Hu, M. et al. Hydrodynamic spinning of hydrogel fibers. Biomaterials 31, 863–869 (2010).

    Article  CAS  Google Scholar 

  15. Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nature Mater. 9, 594–601 (2010).

    Article  CAS  Google Scholar 

  16. Kiriya, D. et al. Meter-long and robust supramolecular strands encapsulated in hydrogel jackets. Angew. Chem. Int. Ed. 51, 1553–1557 (2012).

    Article  CAS  Google Scholar 

  17. Zhang, Z. K., Li, G. Y. & Shi, B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leath Tech. Ch. 90, 23–28 (2006).

    Google Scholar 

  18. Silver, F. H. & Trelstad, R. L. Type-I collagen in solution—structure and properties of fibril fragments. J. Biol. Chem. 255, 9427–9433 (1980).

    CAS  Google Scholar 

  19. Endres, G. F. & Scheraga, H. A. Molecular weight of bovine fibrinogen by sedimentation equilibrium. Arch Biochem. Biophys. 144, 519–528 (1971).

    Article  CAS  Google Scholar 

  20. Mckee, P. A., Mattock, P. & Hill, R. L. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc. Natl Acad. Sci. USA 66, 738–744 (1970).

    Article  CAS  Google Scholar 

  21. Li, R. H., Altreuter, D. H. & Gentile, F. T. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng. 50, 365–373 (1996).

    Article  CAS  Google Scholar 

  22. Nur-E-Kamal, A., Ahmed, I., Kamal, J., Schindler, M. & Meiners, S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem. Bioph. Res. Co. 331, 428–434 (2005).

    Article  CAS  Google Scholar 

  23. Wang, H. B., Dembo, M. & Wang, Y. L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol.-Cell Ph. 279, C1345–C1350 (2000).

    Article  CAS  Google Scholar 

  24. Nemir, S. & West, J. L. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38, 2–20 (2010).

    Article  Google Scholar 

  25. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  26. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  27. Shen, B. Q., Greenfield, P. F. & Reid, S. Hybridoma cells in a protein-free medium within a composite gel perfusion bioreactor. Cytotechnology 16, 51–58 (1994).

    Article  CAS  Google Scholar 

  28. Orive, G. et al. Cell encapsulation: Promise and progress. Nature Med. 9, 104–107 (2003).

    Article  CAS  Google Scholar 

  29. Lim, F. & Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910 (1980).

    Article  CAS  Google Scholar 

  30. Chang, T. M. S. Therapeutic applications of polymeric artificial cells. Nature Rev. Drug. Discov. 4, 221–235 (2005).

    Article  CAS  Google Scholar 

  31. Mironov, V. et al. Organ printing: Tissue spheroids as building blocks. Biomaterials 30, 2164–2174 (2009).

    Article  CAS  Google Scholar 

  32. McGuigan, A. P. & Sefton, M. V. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl Acad. Sci. USA 103, 11461–11466 (2006).

    Article  CAS  Google Scholar 

  33. Matsunaga, Y. T., Morimoto, Y. & Takeuchi, S. Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv. Mater. 23, H90–H94 (2011).

    Article  CAS  Google Scholar 

  34. Kojima, N., Takeuchi, S. & Sakai, Y. Establishment of self-organized system in rapidly formed multicellular heterospheroids. Biomaterials 32, 6059–6067 (2011).

    Article  CAS  Google Scholar 

  35. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA 105, 9522–9527 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Seino (Kobe University) for providing the MIN6m9 cell line, M. Takinoue (Tokyo Institute of Technology) for productive discussions, A. Y. Hsiao (The Univ. of Tokyo) for useful comments on the manuscript, Y. J. Heo and S. Sugimoto (The Univ. of Tokyo) for useful suggestions regarding cell fibre transplantation, I. Obataya and N. Saito (JPK Instruments) for the measurement of hydrogel stiffness by atomic force microscopy, F. Ishidate for CLSM observation on NSC fibres, H. Teramae for physiological analyses of the paraffin sections and T. Hattori (Nippi) for fruitful advice on the material properties of collagen. We also thank M. Kiyosawa for the maintenance of diabetic mice and the measurement of their blood glucose concentrations, H. Aoyagi and M. Ishizaka for assistance in pancreatic islet isolation, M. Onuki for parylene deposition and A. Sato for drawing 3D computer graphics. This work was partly supported by the Takeuchi Biohybrid Innovation Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology (JST), Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.O. and S.T. conceived the design of the study. H.O. fabricated cell fibres. T.O. and H.O. designed and conducted transplantation experiments of cell fibres to diabetic mice. A.I. contributed to the protein secretion analyses of cell fibres. M.K-N. and H.O. performed the Ca2+ imaging of the cortical cell fibre and the differentiation induction of the NSC fibre. R.G. and H.O. performed the knitting, reeling and weaving processes. H.O. and D.K. developed the double-coaxial microfluidic device and measured the mechanical strength of the cell fibres. K.S. performed the RT–PCR analysis and laser Raman scattering spectroscopy. S.M. examined the temporal changes of ECM proteins and the cell-to-cell contacts in the cell fibres. S.I. analysed Fourier-transform infrared spectra of the hydrogel materials. K.K-S. performed the folding of the cell fabric with H.O. Y.T.M. provided considerable advice on the initial direction of the research. Y.S. contributed to the development of the ECM-protein/Ca-alginate core–shell fibres. H.O., T.O. and S.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shoji Takeuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4134 kb)

Supplementary Information

Supplementary Movie S1 (MOV 1458 kb)

Supplementary Information

Supplementary Movie S2 (MOV 1830 kb)

Supplementary Information

Supplementary Movie S3 (MOV 2108 kb)

Supplementary Information

Supplementary Movie S4 (MOV 1522 kb)

Supplementary Information

Supplementary Movie S5 (MOV 1238 kb)

Supplementary Information

Supplementary Movie S6 (MOV 2374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoe, H., Okitsu, T., Itou, A. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nature Mater 12, 584–590 (2013). https://doi.org/10.1038/nmat3606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing